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Abstract

The paper models the interaction between a sell-side analyst and a risk-averse
investor. It studies an analyst�s optimal earnings forecast and an investor�s optimal
trading decision in a setting where the analyst�s payo¤depends on the trade his forecast
generates as well as on his forecast error. The paper shows that in the unique fully
separating equilibrium the analyst biases his forecast upward (downward) if his private
signal is greater (less) than the �rm�s stock price.
The model provides several empirical predictions, including: (i) the analyst biases

his forecast upward more often than downward and his forecast is on average optimistic;
(ii) the analyst acts as if he overweights his private information if it is favorable. If
his private information is su¢ ciently unfavorable, he also acts as if he overweights it,
but to a lesser extent. If his private information is slightly unfavorable he acts as if he
underweights it; (iii) the analyst�s expected squared forecast error may either increase
or decrease in the precision of his private information. If the precision of his private
information is su¢ ciently high, a further increase in this precision always increases his
expected squared forecast error rather than decreases it (as one might expect).

�We would like to thank Stanley Baiman, Paul Fischer, participants of the Interdisciplinary Accounting
Conference 2007 in Copenhagen, Santa Clara University workshop, Stanford Accounting summer camp and
the Tel-Aviv Conference in Accounting for helpful comments and discussion.



1 Introduction

The model explores properties of security analysts�forecast bias and forecast errors if analysts

strive to generate revenue from trading commissions. In the model, an analyst forecasts a

�rm�s future earnings based on private information he obtains. He collects trading commis-

sions from an investor that trades upon observing the analyst�s forecast. When forecasting

earnings, the analyst is not con�ned to tell the truth but may choose to forecast earnings

that di¤er from his posterior expectations. In the model, forecast errors are costly to the an-

alyst who trades o¤ incentives to generate trading commissions against incentives to provide

an accurate estimate of �rm�s future earnings. This trade-o¤ determines the equilibrium

properties of the analyst�s forecast errors. Because investors�trade is increasing in the an-

alyst�s forecast, unbiased forecasts cannot be sustained in equilibrium for all realizations of

the analyst�s private signal. This is the case even though investors rationally anticipate the

bias in analyst�s forecasts �consistent with standard costly signaling models.

In the paper, security prices are set by a continuum of investors with constant absolute

risk aversion (CARA). An investor privately obtains a forecast issued by a security analyst

and may decide to trade based on this information. We assume that the investor that

observes the forecast is a price-taker, i.e. his trade does not a¤ect the stock price.1 Prior to

issuing the forecast, the analyst privately obtains a noisy signal of the �rm�s future perfor-

mance. While the model is framed as the analyst issuing an earnings forecast, the analyst

may obtain and report on any kind of information about the �rm�s future performance, as

long as the analyst�s signal and underlying performance measure are normally distributed.

For instance, the performance measure may also refer to price targets, earnings growth or

revenue forecasts.

Analysts that issue forecasts face various incentives. In the paper, we focus on sell-side

analysts that are employed by full-service brokerage �rms and the revenue from trading com-

missions these analysts may generate for their �rms. Typically, analysts�incentives are tied

to the brokerage �rm�s performance through various channels such as bonus payments that

depend on the overall performance of the brokerage house, compensation that is determined

1The model is robust to having multiple investors observe the analyst�s forecast, as long as the group
of investors is su¢ ciently small, such that their aggregate demand does not a¤ect the price. Additional
modi�cation of the setup in which the informed investors are not price-takers can be based on the setup of
Grossman and Stiglitz (1980) or Kyle (1985) (see footnote 11).
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by the commissions generated from the trade in the stocks covered by the analyst, equity in

the brokerage �rm and career concerns. To capture the alignment of the analyst�s incentives

with the brokerage �rm�s performance, the model assumes that the analyst�s objective func-

tion is increasing in his brokerage �rm�s revenue from trading commissions. In particular,

we assume the analyst bene�ts from a per-share trading commission for the trade his forecast

generates.2

The analyst�s incentives, however, are not limited to generating trading commissions.

As Jackson (2005) states it: �the analyst must trade o¤ the short-term incentive to lie and

generate more trade against the long-term gains from building a good reputation.� More

generally, the analyst also incurs costs from forecast errors. In addition to reputation

concerns, these costs might re�ect any of the following: the analyst�s responsibility to his

investors to accurately report on the �rm�s performance (Morgan and Stocken 2003), in-

creased compensation resulting from higher accuracy (Mikhail et al. 1999), career concerns

(Hong and Kubik 2003), or bene�ts arising from being listed in analyst ranking such as the

�All-American Research Team� published by the Institutional Investor magazine (Stickel

1992). In the model, we summarize these incentives by assuming that forecast errors are

costly to the analyst and that the cost from forecast errors is any (not necessarily symmetric)

U-shaped function that is su¢ ciently steep at the tails.3

In the analysis, we focus on fully separating equilibria. We show that there exists such

equilibrium and that it is unique. In a fully separating equilibrium, the investor can perfectly

infer the analyst�s bias and private information. In a more realistic setting, one might expect

that investors cannot perfectly infer the bias in an analyst�s forecast because investors are

uncertain about the analyst�s �true� objective function in a particular period. We show

that the equilibrium is robust to the introduction of additional information asymmetry in

the form of a random component to the analyst�s cost from forecast errors. Such additional

information asymmetry prevents the investor from perfectly inferring the analyst�s incentives

2we.......
model is motivated as the analyst�s payo¤ being increasing in the trade generated by his forecast,.
However, a broader interpretation of the analyst�s payo¤ function is that his payo¤ is tied to the change

in beliefs induced by his forecast.
3Section 7.8 in the Appendix provides further justi�cation for the analyst�s costs from forecast errors. It

shows that the analyst�s preferred cost function coe¢ cient is not arbitrarily small for the case of a quadratic
cost function. It also provides some intuition for why the analyst does not prefer to minimize his cost
function coe¢ cient.
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and private information (similar to Dye and Sridhar 2004).

In the model�s fully revealing equilibrium, the investor does not trade if he incurs positive

marginal trading costs and the analyst�s private signal is su¢ ciently close to the �rm�s stock

price. For such signals, the investor�s marginal cost exceeds his marginal bene�t from

trading, resulting in a �no-trading� zone. For all signals that fall within the no-trading

zone, the analyst does not bias his forecast. The intuition is that for these signals, the

analyst does not generate any trade in a fully separating equilibrium, and hence minimizes

his expected cost by choosing zero bias. If the analyst�s private signal is to the right of the

no-trading zone, he biases his forecast upwards, such that the bias is an increasing, concave

and bounded function of his private signal. If the analyst�s private signal is to the left of the

no-trading zone, he biases his forecast downwards, such that the bias is an increasing, convex

and bounded function of his private signal. While the analyst biases his forecast both upward

and downward, depending on his private signal, he more often biases his forecast upward

than downward. If his cost function is symmetric, the average forecast bias is upward, such

that the forecast exceeds the �rm�s earnings and appears over-optimistic. This prediction is

consistent with the majority of empirical studies on analysts�bias (for a review see Kothari

2001).

So far, the model assumed that investor�s trades are unrestricted. However, typically

short sales are restricted. Introducing a short sale constraint to our model does not a¤ect the

analyst�s forecasting behavior whenever the short sale constraint is not binding. When the

analyst�s private signal is su¢ ciently low, the constraint becomes binding and the analyst�s

incentive to bias his forecast diminishes. As the analyst�s private signal decreases beyond the

point where the short sale constraint �rst binds, the magnitude of the analyst�s downward

bias decreases and eventually becomes zero.

The fully separating equilibrium of the model gives rise to the following main predictions.4

First, an increase in the per share trading commission the analyst receives increases both

the magnitude of his bias for any realization of his private signal and the expected forecast

bias. As the analyst�s per share trading commission converges to zero, the analyst�s bias

approaches zero as well. Consistent with that prediction, Chen and Jiang (2006) �nd that

4The empirical predictions about the analyst�s expected forecast error/bias are derived under the addi-
tional assumption that the analyst�s cost from forecast error is symmetric around zero.
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the deviation of the analyst�s forecast from unbiased rational expectations increases when

the analyst�s bene�ts from doing so are high and when the costs of doing so are low.

Second, our model predicts that if the analyst�s private signal does not fall within a given

interval whose upper bound is the prior expectation of the �rm�s earnings, the analyst issues

a forecast as if he overweights his private information, i.e. he places a larger weight on his

private information than if he followed Bayes�Rule and truthfully reported his posterior

expectation.5 If the analyst�s private signal falls within the above interval, he issues a fore-

cast as if he underweights his private information. In line with these predictions, Chen and

Jiang (2006) provides evidence that analysts who issue forecasts that exceed the consensus

overweight their private information. If they issue forecasts that are lower than the consen-

sus, analysts overweight their private information by less and sometimes even underweight

it. Easterwood and Nutt (1999) and Friesen and Weller (2006) �nd that analysts act as if

they are overcon�dent and do not act as if they rationally update their beliefs and truthfully

report their expectations.

Third, in the model, an increase in the precision of the analyst�s private signal increases

the magnitude of the analyst�s forecast bias.6 The intuition is that a higher precision of the

analyst�s private signal increases the sensitivity of the investor�s demand to the information

conveyed in the analyst�s forecast. The increased sensitivity of the investor�s demand boosts

the analyst�s incentive to bias his forecast (incentive e¤ect of increased precision).

The �nal prediction relates the analyst�s expected squared forecast error to the precision

of his private information. One might expect that analysts that obtain a signal of higher

precision issue a forecast that results in a smaller expected squared forecast error (distribution

e¤ect). However, the model shows that this does not have to be the case in equilibrium.

Instead, the analyst�s expected squared forecast error always increases in the precision of

the analyst�s private information if the precision is su¢ ciently high. For lower values of the

precision of the analyst�s signal, an increase in the precision can either increase or decrease

the expected squared forecast error, depending on other parameter values of the model.

The reason is that in addition to the distribution e¤ect, an increase in the precision of the

5The interval is between the midpoint of the no-trading zone and the prior expectation of the �rm�s
earnings. In the model, the midpoint of the no-trading zone turns out to equal the stock price of the �rm
(under assumption that the �rm is liquidated at the end of the period).

6This prediction is derived under the additional su¢ cient assumption that the analyst�s marginal cost
from forecast error is not concave.
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analyst�s private signal increases the analyst�s incentives to bias his forecast (incentive e¤ect).

To summarize, the model predicts that analysts with more precise private information do

not necessarily issue forecasts that result in smaller expected squared forecast errors. This

might shed some light on the surprising empirical �ndings that a¢ liated analysts, who are

conjectured to possess more precise information about a �rm, do not outperform independent

analysts in terms of forecast errors (e.g., Gu and Xue 2007).

In addition to the voluminous body of empirical literature, there are several theoreti-

cal papers on analysts�forecasts. Our paper is most closely related to Hayes (1998) and

Guttman (2007). While our paper focuses on how analysts�incentives to generate trading

commissions a¤ect their forecasting decision, Hayes (1998) studies how incentives to gener-

ate trading commissions a¤ect security analysts�decisions in covering stocks and gathering

information.7 In contrast to Hayes (1998), we assume that the precision of the analyst�s

information is exogenously given, but we allow the analyst to intentionally bias his forecast.

That is, the analyst may issue a forecast that deviates from his private information. Both

Hayes (1998) and our model assume that the timing of analysts� forecasts is exogenous.

Guttman (2007) endogenizes the timing of analysts�forecast in the presence of competition

between analysts. In a setup similar to the one in this paper, Guttman (2007) �nds that

analysts with more precise initial private information tend to issue their forecasts earlier.

Ideally, a model would allow an analyst to choose the accuracy of his private information

(information gathering decision), the bias in his forecast (reporting decision) and when to

release his private information (timing decision).

The paper proceeds as follows. Section 2 introduces the model. Section 3 derives the

equilibrium of the model. In this section, we start with the simplifying assumption that

investors do not incur any marginal trading costs. Next, we relax this assumption and derive

the equilibrium for positive marginal trading costs. Then, we introduce short-sale constraints

and �nally we analyze a case where there is additional information asymmetry with respect

to the analyst�s payo¤ function. We show that the equilibrium is robust to these extensions.

Section 4 assumes a quadratic cost function which enables us to derive a closed form solution

to analyst�s equilibrium reporting strategy. Section 5 presents empirical predictions. Section

7Irvine (2004) tests empirical predictions based on Hayes (1998) and also examines how investors�trading
decisions relate to the absolute value of analysts�ex-post forecast errors.
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6 concludes. The Appendix contains formal proofs and additional analysis.

2 Setup

This section describes a parsimonious model of an analyst who issues an earnings forecast

and a risk-averse investor who trades based on the analyst�s forecast. The sequence of

events is the following. A �rm generates earnings, x, that distributed normally with mean

�x and precision �x (i.e. �x =
1

V ar(x)
). Let f (x) denote the probability density function of

the �rm�s earnings and assume it is common knowledge. The realized value of the �rm�s

earnings are not directly observable to anybody outside the �rm. However, an analyst

obtains private information about the �rm�s earnings. His private information,  , is a noisy

signal of �rm�s earnings. In particular,  = x + " where " is independently and normally

distributed with zero mean and precision � ". At times we refer to the realized signal  

as the analyst�s type. Based on his private information, the analyst provides a forecast,

xR, of the �rm�s future earnings to an investor. When issuing his forecast, the analyst is

not con�ned to tell the truth. Rather, he can release a forecast that di¤ers from his own

beliefs about the �rm�s expected earnings given his private information  . The analyst�s

incentive to issue a forecast that di¤ers from his personal beliefs arises due to the trading

commissions he collects if the investor trades based on the information conveyed by the

forecast. This provides an incentive to issue a forecast that generates as much trade as

possible. However, the analyst incurs a personal cost whenever his forecast di¤ers from

the realization of the �rm�s earnings, i.e., forecast errors are costly to the analyst. When

deciding what forecast to issue, the analyst trades-o¤ the expected cost from forecast errors

against trading commissions following a given forecast.

In particular, the analyst�s cost from forecast errors is g
�
xR � x

�
where g (�) is a twice-

di¤erentiable, convex function where for any given x lim
xR!�1

@g(xR�x)
@xR

= �1 and lim
xR!1

@g(xR�x)
@xR

=

1.8 These conditions imply that the cost function is a �U-shaped�function with a unique

minimum and that for a given sign of the forecast error, the marginal cost increases in the

magnitude of the forecast error. We assume that the forecast that minimizes the analyst�s

expected cost is the unbiased forecast, i.e., issuing a forecast that equals the analyst�s ex-

8Note that the results remain unchanged if the limit of
@g(xR�x)

@xR
for xR ! +=�1 is bounded by a �nite

constant that depends on the other parameters of the model.
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pectation given his private information. However, a similar equilibrium exists if we relax

this assumption and allow for a di¤erent cost minimizing bias.

The analyst�s trading commission is proportional to the trading volume generated by his

forecast. The trading volume is the di¤erence between the investor�s initial demand, D0,

and his demand after he observes the analyst�s forecast, D1

�
xR
�
. We denote the trading

commission that the analyst obtains per traded share as cA. To summarize, when issuing his

forecast, xR, given his private information,  , the analyst maximizes the following objective

function

uA
�
xR;  

�
= cA

��D1

�
xR
�
�D0

��� E
�
g
�
xR � ex��� � . (1)

Apart from the investor that receives the analyst�s forecast (�informed investor�), there

is a continuum of uninformed investors, each of which has a utility function with constant

absolute risk aversion given by�e��W1 whereW1 is the end-of-period wealth and � is the risk-

aversion coe¢ cient. It is a well-known result that given the above assumptions the initial

demand of the representative investor is D = �x�P0
�

�x where P0 is the equilibrium stock

price. The exogenous per capita supply of the �rm�s stock is given by S. In equilibrium

the �rm�s stock price, P0, is set such that the per capita demand, D, equals the per capita

supply S. The equilibrium stock price, that equates demand and supply, is P0 = �x � �S
�x
.

We assume that the informed investor is su¢ ciently small such that he acts as a price

taker and can buy or sell any number of shares at the stock price P0.9 The number of shares

the investor buys or sells, i.e., the trading volume, is given by jD1 �D0j where D0 is the

informed investor�s initial holding. For each share that the investor buys or sells following

the analyst�s forecast, he incurs per-share trading costs of cI .10 After observing the analyst�s

forecast xR, the informed investor updates his beliefs about the �rm�s earnings in a rational,

Bayesian manner and chooses the demand that maximizes his expected utility which is given

by

D1 (xR) 2 argmax
D1

E
�
uI (D1) jxR

�
= �

Z 1

�1
e��(Wo+D1(ex�P0)�cI jD1�D0j)f �exjxR� dx. (2)

9We assume that the investor is allowed to trade only once (similar to Grossman and Stiglitz 1980).
Alternatively, we could assume that either the �rm�s earnings themselves or some other information about
the �rm�s earnings are revealed immediately after the investor trades upon the analyst�s forecast. This
ensures that the investor is exposed to some risk and hence will not trade an in�nite amount.
10Depending on the analyst�s incentive system, cA may or may not equal cI . While we allow for cI 6= cA,

we assume that both cI and cA are the same for buys and sells. However, this is only a simplifying
assumption and introducing di¤erent marginal costs for sells and buys will result in a similar equilibrium.
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Anticipating his holdings D1

�
xR
�
following the analyst�s forecast, the investor chooses his

optimal initial holdings D0 that maximizes his expected utility.11

All parameters of the model are assumed to be common knowledge.

3 Equilibrium

We can now de�ne the Perfect Bayesian Equilibrium of this game.

De�nition 1 The equilibrium consists of the analyst�s forecasting strategy xR ( ) : R ! R

and the informed investor�s demand function D1

�
xR
�
: R! R and D0 such that

(i) For all  , the analyst�s forecasting strategy xR ( ) maximizes his expected utility in (1)

where the analyst�s correctly anticipates the informed investor�s equilibrium demand,

D1

�
xR
�
.

(ii) For any xR, the informed investor�s demand D1

�
xR
�
maximizes his expected utility in

(2) where the informed investor�s beliefs about the �rm�s earnings are consistent with

xR ( ) using Bayes rule, whenever applicable.

(iii) Taking his demand D1 (�) and the analyst�s forecasting strategy xR (�) as given, the
informed investor chooses D0 that maximizes his ex-ante expected utility.

We focus on equilibria where the analyst�s forecast fully reveals his private signal (fully

separating equilibria). In such an equilibrium, the optimal initial demand of the informed

investor D0 is the same as the demand of the representative uninformed investor, D.12 As

a result, whether the informed investor anticipates that he will obtain the analyst�s forecast

has no e¤ect on the informed investor�s initial holding and on the equilibrium as a whole.

11A natural modi�cation of the setup in which the informed investors are not price-takers could be based
on the setup of Grossman and Stiglitz 1980 (herafter G&S). In such a setup, the analyst sells his forecast to
a substantial fraction of investors who pay a �xed fee for obtaining the analyst�s forecast in addition to the
trading commission per share. For cI = 0; the investors�demand is exactly the same as in G&S (see section
3.1) and one can show that there exists an equilibrium in which the analyst�s forecasting strategy remains
qualitatively unchanged. For cI > 0, the informed investors�demand is no longer linear in the inferred
private signal due to the no-trading zone (see section 3.2). As a result, the original linear equilibrium
of G&S no longer holds. However, as long as there exists an equilibrium for the G&S setup with non-
linear demand where the informed investors� trade is increasing in the private information, the analyst�s
optimization problem remains qualitatively the same. Similar arguments apply to the setup of Kyle (1985).
12We include a proof of this result in the Appendix.
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3.1 Zero marginal trading cost

Further, we initially assume for simplicity that cI = 0; i.e., the investor does not pay any per

share trading commission (or ignores this commission while determining his demand). We

later analyze the case of cI > 0 and show that the major characteristics of the equilibrium

remain qualitatively unchanged.

In a fully separating equilibrium the �rm�s earnings given the analyst�s forecast are nor-

mally distributed and the informed investor�s demand following a forecast xR is

D1

�
xR
�
=
E
�exjxR�� P0

�V ar (exjxR) .
In such equilibria, there is a signal  � following which the investor�s demand remains un-

changed. The analyst that observes the signal  � does not generate any trade in the fully

separating equilibrium, and hence issues the forecast that minimizes his expected cost from

forecast errors, i.e., he issues an unbiased forecast.

Before we show that a unique fully separating equilibrium exists, we derive several prop-

erties that the analyst�s forecasting strategy must possess to be part of an equilibrium. First,

we show that the analyst�s forecasting strategy xR ( ) has to be continuous in his private

information, and hence, the analyst�s equilibrium forecast must be strictly increasing in his

private signal. Next, we show that not only the analyst�s forecast, xR, but also his forecast

bias, b ( ) = xR ( ) � E [exj ], is increasing in the analyst�s signal. Nevertheless, the bias

is bounded from both below and above. Based on these characteristics, we show that there

exists a fully separating equilibrium and that it is unique.

Below we provide a more detailed argument of the steps outlined above. We start

with identifying the signal  � following which no trade occurs. In a fully separating

equilibrium, the analyst�s forecast, xR ( ), for any  is informationally equivalent to his

private information. Hence, in equilibrium the informed investor�s demand is given by

D1

�
xR
�
= D1 ( ) =

E[exj ]�P0
�V ar(exj ) where E [exj ] = �x�x+ �"

�x+�"
and 1

V ar(exj ) = �x + � ". The sig-

nal  � is the signal for which D1 ( 
�) = D0 and no trade occurs. It turns out that  � is

independent of the precision of the analyst�s private signal and is given by

 � = P0. (3)

That is, regardless of the precision of the analyst�s signal, the informed investor will not

trade if he infers a private signal of  � = P0. We denote investor�s expectation if he infers
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that  =  � by x� where x� = E [exj �]. Note that x�, the posterior expectation for

which the investor does not trade, is lower than �x. If the informed investor infers a signal

 >  � ( <  �), he will buy (sell) additional shares and the number of shares traded will

be increasing (decreasing) in the inferred signal  .

Claim 1 In a fully separating equilibrium, following a signal  � the analyst will not bias his

forecast, i.e., xR ( �) = E [exj �] = x�.

In a fully separating equilibrium the private signal is correctly inferred by the investors,

hence, if  =  � no trade will occur. From the analyst�s perspective,  � is the signal that

generates the lowest payo¤ (�lowest type�). Hence, in equilibrium the analyst will not be

willing to bear any �signaling costs�in the form of forecast bias.

Next, we show that the forecast is continuously increasing in the analyst�s private signal

 .

Claim 2 The analyst�s forecast xR is continuously increasing in  .

In a fully revealing equilibrium, the analyst�s trading commission is continuous in  

because the investor can perfectly infer the analyst�s private signal. In equilibrium, it

cannot be the case that there is a discrete jump in the bias at any private signal  0. If there

were a jump at  0 the di¤erence between the expected cost from forecast errors for types

just to the right of  0 and just to the left of  0 is discrete, while the di¤erence between the

trade generated by the above two types is arbitrarily small. Therefore, the type with the

higher expected cost from forecast errors would always have an incentive to mimic the other

type, which contradicts the existence of an equilibrium with discontinuous bias.

Given that the forecast is continuous in the analyst�s private information, in a fully

revealing equilibrium the analyst�s forecast must be strictly monotone in  . The unbounded

support of the analyst�s private signal in combination with unbounded cost from forecast

errors preclude that in equilibrium the analyst forecast is monotonically decreasing in  .

In the next two steps, we establish that not only the analyst�s forecast but also the bias

in his forecast is strictly increasing in  .

Claim 3 For any  >  � ( <  �), the bias b ( ) is greater (less) than b ( �).
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Since the analyst�s forecast is increasing in  , for any xR > xR ( �) the informed investor

infers that  >  � and his trade is increasing in the analyst�s forecast. Hence, by increasing

the bias in his forecast, the analyst obtains higher trading commissions. In order for this

to be sustainable in equilibrium, the analyst�s expected cost from biasing his forecast must

also be increasing in the forecast bias. Since the cost minimizing bias equals zero for all  ,

expected costs are increasing in the bias only if the bias is positive.13 So, in equilibrium,

the bias is always upwards (positive) if  >  �. For  <  � a similar argument implies that

the bias is always downwards (negative).

Claim 4 The bias is weakly increasing in  .

From Claim 2 and 3 it follows that the bias is continuously increasing in a neighborhood

around  �. When the bias increases in  , E
�exjxR� increases in the forecast xR at rate

of less than 1 (but positive).14 Suppose the bias starts to decrease in  at some point  0.

When the bias decreases, the conditional expectation increases in the report at a rate of

more than 1. If the bias starts to decrease at  0 >  � then there are two types, one to

the left and one to the right of  0, that have the same bias and hence the same marginal

expected cost from forecast errors. However, the marginal bene�t of the two types di¤ers

because E
�exjxR� (and hence the trading volume) increases at a lower rate for the type to

the left of  0 than for the type to the right of  0. This contradicts the equilibrium condition

that marginal cost equals marginal bene�t for any type. Based on a similar argument, we

preclude a decreasing bias for  <  �. Hence, the bias is increasing in  for all  .

Claim 5 The bias function, b ( ), is concave in  for  >  � and convex in  for  <  �.

We know from Claim 4 that the bias is increasing in  . Hence, for  >  � both

the expected cost and the expected marginal cost from forecast errors are increasing in  .

13For a given bias, the expected cost from forecast errors is independent of the analyst�s private information
 . To see that, we can rewrite g

�
xR � x

�
as g (b+ �) where b = xR�E [exj ] and � = E [exj ]�x. It follows

that � given any realized private signal,  ; is distributed normally with mean zero and precision �x + �".
The expected cost from forecast error,

R1
�1 g

�
xR � x

�
f (xj ) dx, can be rewritten as

R1
�1 g (b+ �) f (�) d�.

Hence, the expected cost for a given bias is independent of the realized signal  .
14To see this consider that E

�exjxR� = xR � b
�
xR�1

�
xR
��
where xR�1 (�) denotes the inverse function of

the analyst�s forecasting strategy xR ( ). Hence,
dE[exjxR]
dxR

= 1 � db
d 

dxR�1

dxR
= 1 � db

d 
1

dxR( )=d 
. The claim

follows immediately from @xR( )
@ > 0.
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Suppose, the bias was convex in  for  >  �. Then, the sensitivity of informed investor�s

expectation about the �rm�s earnings, E
�exjxR�, to changes in the analyst�s forecast would be

lower for higher values of xR (i.e. @E
�exjxR� =@xR would be weakly decreasing in xR). This

would imply that the marginal bene�t from trading commissions was lower for greater values

of  (and xR ( )). Since in equilibrium the marginal expected cost from biasing the forecast

must equal the marginal bene�t from trading commission for any xR ( ), the above opposite

e¤ects under the assumption of a convex bias function cannot be sustained in equilibrium

for  >  �: Again, we can make a similar argument for the bias being convex for  <  �.

Claim 6 The bias is bounded from below and above.

Since the bias increases in  , the informed investor�s expectations about �rm�s earnings,

E
�exjxR�, increases in the forecast at a rate of less than one. Hence, the marginal bene�t

from biasing the forecast is bounded, which implies that the marginal expected cost (which

equals the marginal bene�t in equilibrium) is bounded as well. Since the cost function, g (�),
is su¢ ciently steep in its tails, this implies that the bias itself is also bounded.

Using the equilibrium properties of the analyst�s forecasting strategy that we have estab-

lished so far, we can now state the Proposition that establishes both existence and uniqueness

of a fully separating equilibrium.

Proposition 1 There exists a unique fully separating equilibrium where

(i) The analyst�s equilibrium forecasting strategy is xR ( ) = E [exj ] + b ( ) where the

bias function b ( ) is increasing, continuous, convex for  <  �, concave for  >  �,

bounded from above and below and b ( �) = 0;

(ii) The investor�s demand following the analyst�s forecast is given by

D1

�
xR
�
=
xR � b

�
xR
�
� P0

�V ar (xj )

where b
�
xR ( )

�
= b ( ) is the investor�s beliefs about the analyst�s bias given xR, stock

price P0 = �x � �S
�x
.

(iii) The investor�s initial holding is D0 = D = S.

12



Figures 1 and 2 illustrate the equilibrium in Proposition 1. To generate the �gures we

used the quadratic cost function analyzed in section 4 with parameter values cA = � = �x =

� " = S = 1; �x = 2 (which implies  
� = 1). The �gure presents the analyst�s forecast bias,

b ( ) ; and his forecasting strategy, xR ( ) :
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Figure 1: The equilibrium bias and forecasting strategy of the analyst.
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Figure 2: The equilibrium trade as a function of the forecast.

The only part of the proposition that hasn�t been established in the preceding claims is

that such fully separating equilibrium exists and is unique. To see the uniqueness, suppose

there existed two equilibria. With out loss of generality assume that the two equilibria di¤er

for some  >  �. For both equilibria the boundary condition that the bias at  � equals zero

has to hold. Since both equilibria start out with the same boundary condition, there has

to be an interval of types for which in one equilibrium the bias is greater and increases at

a higher rate relative to the other. A greater bias implies that the marginal expected cost,

13



@E[g(E[xj ]+b�x)j ]
@b

, is higher. Similarly, the bias being increasing at a higher rate implies that

the marginal bene�t from trading commission, @
@b

cAE[exjxR]
�V ar(exjxR) , is lower. The intuition for the

latter is that if the bias increases at a higher rate, the informed investor attributes a larger

part of the increase in the forecast to the increase in the bias rather than to the increase in

expected �rm value. Hence, if one of the bias functions constitutes an equilibrium then the

other bias function cannot be part of an equilibrium. This is equivalent to there being a

unique equilibrium. We leave the proof of existence to the Appendix.

3.2 Positive marginal trading cost

So far, we assumed that the informed investor does not incur costs from trading. A more

realistic assumption is that he incurs positive marginal trading costs, for instance trading

commissions that he has to pay to the analyst�s brokerage house. To capture this assumption

we allow for cI > 0 in the following.

Proposition 2 There exists a unique fully separating equilibrium, in which the analyst�s

forecasting strategy is given by

bcI ( ) =

8>>>>><>>>>>:

b0

�
 � cI

�x+�"
�"

�
if  > P0 + cI

�x+�"
�"

0 if P0 + cI
�x+�"
�"

>  > P0 � cI
�x+�"
�"

b0

�
 + cI

�x+�"
�"

�
if P0 � cI

�x+�"
�"

>  

where b0 ( ) de�nes the analyst�s forecasting strategy for cI = 0. The informed investor�s

demand function is given by

D1

�
xR
�
=

8>>>>><>>>>>:

E[exjxR]�P0�cI
�=(�x+�")

if xR > �x�x+P0�"
�x+�"

+ cI

D0 if �x�x+P0�"
�x+�"

+ cI > xR > �x�x+P0�"
�x+�"

� cI

E[exjxR]�P0+cI
�=(�x+�")

if �x�x+P0�"
�x+�"

� cI > xR

(4)

where P0 = �x � �S
�x
, D0 = D and E

�exjxR� = xR � bcI
�
xR
�
. The inferred bias bcI

�
xR
�
is

de�ned by

bcI
�
xR
�
=

8>>>><>>>>:
b0
�
xR � cI

�
if xR > �x�x+P0�"

�x+�"
+ cI

0 if �x�x+P0�"
�x+�"

+ cI > xR > �x�x+P0�"
�x+�"

� cI

b0
�
xR + cI

�
if �x�x+P0�"

�x+�"
� cI > xR
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Following the introduction of marginal trading costs to the investor, we obtain a �no-

trading� zone. That is, if the investor infers that the analyst observed a signal close to

 � the investor�s marginal bene�t from trading is lower than his marginal cost, cI . Hence,

in equilibrium, he will not trade at all. In the fully separating equilibrium, the analyst

anticipates that he will not generate trading commission for those realizations of his private

signal. As a result, he will not bear any cost for biasing his forecast. This is re�ected in

his equilibrium forecasting strategy which shows that he will truthfully report his private

beliefs for all  2
h
 � + cI

�x+�"
�"

;  � � cI
�x+�"
�"

i
. For notational convenience let 	NT denote

the interval
h
 � + cI

�x+�"
�"

;  � � cI
�x+�"
�"

i
for which no trade occurs �the no-trading zone.

For all realizations outside of the no-trading zone, the equilibrium that we obtain for

cI > 0 is equivalent to the equilibrium that we obtained in Proposition 1 (when the investor

did not incur any costs from trading). The analyst�s bias function and the equilibrium

trading are identical in the two equilibria when the bias and the demand are expressed as

a function of the distance between the private signal and boundary of the no-trading zones

(where in the equilibrium for cI = 0 the no trading zone is the singleton  
�).

In particular, if cI > 0 the analyst�s bias and the investor�s demand that occur in equilib-

rium for a signal that exceeds the upper bound of the no-trading zone by a certain amount

are exactly the same as the analyst�s bias and the investor�s demand that occur in equilib-

rium if cI = 0 for a signal that exceeds the �no-trading�point,  �, by the same amount.

Figure 3 illustrates that.

It might seem surprising that the functional form of the equilibrium bias and demand

remains unchanged. When the investor does not incur any costs from trading, he optimally

buys additional shares if his posterior expectations about �rm�s earnings, E
�exjxR�, exceeded

x� (the posterior beliefs for which no trade occurs even if cI = 0). Similarly, he optimally

chose to sell shares if his posterior expectations E
�exjxR� < x�. When the investor does

incur costs from trading, cI > 0, he buys additional shares only if his posterior expectation

is su¢ ciently high to compensate him for the trading costs of cI . That is, he only buys

shares if his posterior expectations, E
�exjxR�, exceed x� + cI . Correspondingly, he only

sells shares if his posterior expectation is su¢ ciently low to justify the trading costs of cI .

That is, he only sells shares if E
�exjxR� is less than x� � cI . If his posterior expectation

fall inbetween these two cuto¤s (i.e. fall within the no-trading zone), the investor will not
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trade (see equation 4). The introduction of positive trading costs per share does not a¤ect

the sensitivity of the investor�s demand function with respect to the private signal he infers

from the analyst�s forecast. In particular, for E
�exjxR� outside of the no trading zone the

investor�s demand is still a linear function of the inferred private signal with the same slope

as in the case where there were no trading costs. Figure 3 compares the demand for the

cases of zero and positive trading costs.
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Figure 3: Positive Trading Costs

For all signals for which the posterior expectations fall into the no trading zone, the

analyst�s forecast will not generate any trade in a fully separating equilibrium, and hence

he will choose not to bias his forecast. The intuition is exactly the same as the intuition

provided for claim 1.

Since the equilibrium demand to the right (left) of the no trading zone for cI > 0 is the

same as the demand to the right (left) of the �no trading point�x� for cI = 0, the analyst

achieves the same change in demand by changing the investor�s expectations by a certain

amount. As a result, in equilibrium, the analyst faces the same incentives from trading

commissions and the same costs from biasing his forecast if the investor incurs positive

trading costs as if the investor does not incur any trading costs.

3.3 Short-sale constraints

So far, we assumed that the investors� ability to sell and buy shares is symmetric and

unconstrained. However, typically �nancial institutions essentially limit the number of
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shares investors may short-sell (or it is too expensive to do so). If the number of shares the

investor can sell after he obtains the analyst forecast is limited, the commission the analyst

can generate from issuing a low forecast is restricted as well. Hence, a short-sale constraint

may a¤ect the analyst�s incentive to bias his forecast if he obtains a low signal. In the

following we characterize the e¤ect of a short-sale constraint on the equilibrium.

Suppose the investor can infer the analyst�s private signal in equilibrium. Then, the

short sale constraint becomes binding for  su¢ ciently low. In particular, let  denote

the highest realization of the analyst�s signal for which the short sale constraint is binding.

The equilibrium we derive is such that for all  >  the analyst�s forecast fully reveals

his private information. In addition, for all  >  the analyst�s equilibrium bias and the

trade it generates are the same as in the absence of any short sale restrictions. For all

private signals  �  the analyst chooses the forecast that minimizes his expected cost

from forecast error subject to the constraint that the forecast induces investors to short-

sell the maximum amount of shares. This implies that the analyst reports xR
�
 
�
for all

 such that the conditional expectation, E [exj ] ; exceeds xR � � : For all lower values of
 the analyst reports an unbiased forecast. This forecasting strategy ensures the analyst

the maximum trading commission for all  �  . Figures 4 and 5 illustrate the analyst�s

equilibrium forecast bias and investor�s demand in the presence of a short-sale constraint of

s shares. Here, s is the maximum number of shares an investor can short-sell. As a result,

the maximum number of shares he can sell is the sum of s and his initial holdings D0.
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Figure 4: Analyst�s bias and forecast in the presence of short sale constraint

The equilibrium we describe above includes a pooling interval to the left of  (in the size
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Figure 5: Investor�s demand in the presence of short sale

of � �x+�"
�"

b
�
 
�
). We cannot preclude the existence of other equilibria that include di¤erent

pooling intervals. However, the equilibrium that we derive is the unique equilibrium in

which the informed investor�s equilibrium demand would be the same if he were to observe

the analyst�s private information. In that sense, the equilibrium we derive dominates other

potential equilibria from the investor�s perspective.15

3.4 Unknown analyst�s objective function

So far, the analyst�s payo¤ function was common knowledge and the information asymmetry

between the analyst and the investor was limited to the analyst�s private signal  . This

resulted in an equilibrium in which the fully separating strategy of the analyst fully revealed

his private signal. In a more realistic setting, one might expect that investors�are uncertain

about the analyst�s �true�objective function in a particular period. To verify the robustness

of the model to this additional information asymmetry, we introduce an additional parameter

to the analyst�s payo¤ function, about which the investor is uninformed (similar to Dye and

Sridhar 2004). In particular, we assume that the analyst�s payo¤ function is

uA
�
xR;  ; �

�
= cA

��D1

�
xR
�
�D0

��� E
�
g
�
xR � ex� �

��� ; ��
where � is normally distributed with mean zero and precision ��, and is independent of x

and  . While the analyst observes � before deciding about his forecast, the investor does

15We cannot preclude that the analyst incurs lower expected cost from forecast errors in another partially
pooling equilibrium, if such exists. Hence, if such other partially pooling equilibrium exist we cannot rank
the equilibria in terms of Pareto Dominance.
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not observe �. In the Appendix, we show that the equilibrium in Proposition 1 is robust to

the additional information asymmetry about the analyst�s payo¤ function. In particular, we

show the existence of an equilibrium where the investor is no longer able to perfectly infer

the analyst�s private signal  about the �rm�s earnings. Instead, the investor can infer only

the sum of the analyst�s posterior expectation and �, that is the investor learns E [exj ] + �.
For more details and formal proof see the appendix.

4 Equilibrium with a quadratic cost function

So far, the analyst�s cost function, g (�), was fairly general in its form. While we were able to
derive several characteristics of the analyst�s forecast bias in the fully separating equilibrium,

it is impossible to derive a closed form solution for the equilibrium forecast and demand.

In this section, we trade o¤ the general form of the cost function for a more speci�c cost

function that enables us to derive a closed form solutions to the analyst�s and investor�s

equilibrium maximizations problems. The closed form solution enables us to generate a

speci�c example of the equilibrium forecasting and trading behavior which we use as a basis

for all the plots.

In particular, we assume that the analyst�s cost function is quadratic in his forecast error,

a fairly common assumption in the disclosure literature. So, the analyst�s payo¤ function is

uA
�
xR;  

�
= cA

��D1

�
xR
�
�D0

��� 1
2
E
h�
xR � ex�2��� i . (5)

For simplicity of disposition, we assume that the informed investor does not face any short-

sale constraint and that trading is costless (cI = 0). As in the case with general cost

functions, the equilibrium can easily be extended to account for short-sale constraint and

positive trading costs. Since the quadratic cost function is a particular case of the more

general convex cost function g (�), all equilibrium characteristics established so far hold for

the quadratic cost function as well. In particular, the equilibrium bias b ( ) is increasing,

continuous, convex for  <  �, concave for  >  �, bounded from above and below, and

zero for  �.

As in the general case, the analyst does not bias his forecast if he obtains  � as his private

signal. Using b ( �) = 0 as a boundary condition for the di¤erential equation for b ( ) (that

stems from the �rst order condition of the analyst�s optimization problem), we can obtain a
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closed form solution for the analyst�s forecasting strategy. Recall that the demand D1

�
xR
�

equals
xR�bb(xR)�P0
�V ar(exj ) where bb �xR� denotes the bias the investor infers if he observes a forecast

xR. Then, the �rst order condition with respect to xR for  >  � is16

cA
1� @bb(xR)

@xR

�V ar (exj ) � E
�
xR � ex�� � = 0

In a fully separating equilibrium, the investor�s beliefs are consistent with the analyst�s

forecasting strategy, that is bb �xR ( )� = xR ( ) � E [exj ] � b ( ). Substituting into the

�rst order condition yields

cA

1� b0 ( ) 1
@E[ exj ]
@ 

+b0( )

�V ar (exj ) � b ( ) = 0

Given the boundary condition b ( �) = 0, the solution to the above di¤erential equation

yields the equilibrium forecast bias function for  >  �. Since the quadratic cost function

is symmetric around  � solving for the equilibrium forecast bias for  <  � yields a similar

di¤erential equation and the absolute value of the equilibrium bias is symmetric relative to

 �. The following Proposition describes the equilibrium for the case of the quadratic cost

function.

Proposition 3 There exists a unique fully separating equilibrium where

(i) The analyst�s optimal forecast is given by xR ( ) = E [exj ] + b ( ) where17

b ( ) =

8>><>>:
cA(�x+�")

�

�
1 + Pr oductLog

�
�e�

( � �)�"�
cA(�x+�")

2�1
��

if  �  �

� cA(�x+�")
�

�
1 + Pr oductLog

�
�e�

( �� )�"�
cA(�x+�")

2�1
��

if  <  �

(ii) The informed investor�s demand is given by

D1

�
xR
�
=
q
�
xR
�
� P0

�
(�x + � ")

where q
�
xR
�
= xR � b

�
xR
�
and

b
�
xR
�
=

8<:
cA(�x+�")

�

�
1� e

� �
cA(�x+�")

(xR�x�)
�

if xR � x�

� cA(�x+�")
�

�
1� e

� �
cA(�x+�")

(x��xR)
�
if xR < x�

16The case of  <  � yields a corresponding �rst order condition (see Appendix).
17Pr oductLog (x) (also known as Lambert-W or Omega function) is the solution to the di¤erential equation

f 0 (x) = f(x)
x(1+f(x)) . For a graph of the Pr oductLog function, see the Appendix.
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As mentioned above, Figure 1 illustrates the analyst�s forecast and his bias as a function

of his private signal  . The parameter values used for the illustration are: cA = � = �x =

� " = S = 1; �x = 2.

First, notice that b ( �) = 0. The intuition is that in a fully separating equilibrium type

 � is the �lowest�type in the sense that type  � does not generate any trading commissions.

Therefore type  � achieves his best outcome if he minimizes his expected cost from forecast

errors and chooses zero bias. Given that type  � does not bias his forecast, his marginal

expected cost of biasing his forecast are zero as well. For that to be an equilibrium, it must

be that his marginal bene�t from biasing his forecast are also zero. This is the case only

if the informed investor attributes a marginal change of xR; for xR close to xR ( �) ; almost

entirely to a change in the forecast bias rather than to a change in the analyst�s private

signal. Indeed, the equilibrium bias function has an in�nite slope at  �, consistent with

the investor�s beliefs being insensitive to changes in the forecast at xR ( �). The fact that

investor�s beliefs are insensitive to changes in the forecast at xR ( �) = x� can be seen in

�gure 2.

Since the bias is increasing in  in the fully separating equilibrium, the investor never

attributes an increase in the forecast just to an increase in the private signal but also to an

increase in the forecast bias. As a result, the sensitivity of his expectations E
�exjxR� to the

analyst�s forecast is always lower than one. This guarantees that the slope of the demand

as a function of the analyst forecast is less than 1
�V ar(exj ) . Hence, the analyst�s marginal

bene�t from biasing his forecast is bounded. In equilibrium, the analyst�s marginal cost

from biasing his forecast equals his marginal bene�t from doing so. Therefore, his marginal

cost must be bounded as well. Since the marginal cost from biasing are linearly increasing

in the bias, the bias itself must be bounded from both below and above. Figure 1 illustrates

that the bias approaches its upper and lower limit asymptotically as the analyst�s private

signal  approaches +1 and �1, respectively. The consequence of an (almost) constant

bias can be seen in the tails of the investor�s demand. As the bias approaches a constant,

the investor attributes a change in the forecast almost entirely to a change in the analyst�s

private signal, which results in his demand converging to the maximum slope of 1
�V ar(exj )

(see �gure 2).
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5 Empirical predictions

In practice, analysts�are subject to various kinds of incentives. These incentives may arise

from trading commissions as well as other activities such as investment banking, access

to senior management of the companies covered or career concerns. Any speci�c set of

incentives an analyst is exposed to will a¤ect the properties of his forecast. The empirical

predictions in this section focus on the properties of analyst�s bias that are due to trading

commissions alone.

For simplicity of the analysis and disposition, we assume that there is no short-sale

constraint, and that the analyst�s objective function is common knowledge. However, we do

not require the cost function to be quadratic and we �allow for the investor�s trading cost,

cI , to be positive.

The �rst prediction of the model is that the analyst biases his forecast upwards more

often than downwards and that when his cost function is symmetric his forecast is on average

optimistic.

Corollary 1 The median bias in the analyst�s forecast is positive. If the analyst�s cost

function is symmetric, the expected bias in his forecast is positive.18

The analyst�s incentives to bias his forecast arise from the trade he can generate. These

incentives and the equilibrium bias are symmetric relative to his private signal  � that

generates no trade. Since the analyst�s forecast reduces the uncertainty the investor is

exposed to, no trade occurs for a signal that lowers the investor�s expectation about the

�rm�s earnings, i.e.  � < �x. This implies that while the bias is symmetric, it is not

symmetric relative to the mid-point of the distribution but rather relative to a point that

lies to the left of the prior expectation �x. As a result, the average bias is upwards and the

average forecast error, FE = x � xR; is negative. (All formal proofs are included in the

Appendix.)

The prediction that the forecast is optimistic on average is supported by most of the

empirical studies on analysts�earnings forecasts (see the survey in Kothari 2001). Jackson

18For cI su¢ ciently high, such that �x is included in the�no trade zone,�the median bias equals zero. In
addition, if the cost function is symmetric both the mean and median forecast errors are negative (optimistic)
where FE = x� xR.
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(2005) documents that analysts trade o¤ accuracy for optimistic bias. The literature also

o¤ers other explanations for optimistic analyst forecasts and stock recommendations. The

following is a representative but not exhaustive list. Dugar and Nathan (1995), Lin and Mc-

Nichols (1998), Michaely and Womack (1999) provide evidence for a¢ liated analysts being

more optimistic than una¢ liated analysts. Lim (2001), suggests that analyst�s rationally

bias their forecast upwards in order to obtain better information from the �rm�s manage-

ment in the future. Hong and Kubik (2003) show that career concerns also may induce

overoptimistic forecasts.

In our model, the extent to which the analyst�s forecast is on average optimistic depends

on the trading commission he can generate. Higher trading commissions per share provide

the analyst with stronger incentives to bias his forecast. As a result, the magnitude of his

bias is increasing in the trading commission per share. If the cost function is symmetric,

an increase in the per share trading commission, cA, not only increases the magnitude of

the bias for each  but also increases the expected bias E
h
b
�e �i. As one would expect,

as the commission per share converges to zero, the analyst�s incentive to bias his forecast

diminishes and his bias converges to zero for any  . The following Corollary summarizes

these predictions.

Corollary 2 In the equilibrium of Proposition 2,

(a) for any  62 	NT the absolute value of b
�e � is increasing in cA;

(b) the expected squared forecast error, E [FE2] ; is increasing in cA: If the analyst�s cost

function is symmetric, his expected bias, E
h
b
�e �i is increasing in cA; and

(c) for any  , lim
cA!0

b ( ) = 0.

The analyst�s utility function depends not only on the trading commission per share, cA,

but also on the informed investor�s risk aversion �. In particular, an increase in informed

investor�s risk aversion coe¢ cient, �, has the exact opposite e¤ect to an increase in cA. This

is re�ected in the analyst�s utility function and his equilibrium bias being a function of the

ratio cA
�
(see for example b ( ) in Proposition 3). A decrease in the informed investor�s risk

aversion increases the sensitivity of his demand to changes in his beliefs about the analyst�s
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private information. As a result, it also increases the sensitivity of the analyst�s trading

commissions to changes in the investor�s beliefs about the analyst�s private information,

similar to the e¤ect of an increase in cA.

Note that if the change in the risk aversion coe¢ cient applies not only to the informed

investor but to all investors, it has an additional e¤ect on the stock price P0. This change

in P0 might have an opposite e¤ect on the analyst�s incentives compared to the change in

the informed investor�s risk aversion. We cannot determine the overall e¤ect of a change in

all the investors�risk aversion coe¢ cient on the analyst�s equilibrium bias.

In the model, both the analyst�s and the investor�s equilibrium beliefs are fully rational in

the sense that they are consistent with Bayes�Rule. Nevertheless, the equilibrium forecasting

behavior resembles the behavior of an analyst that overweights his private information for

most realizations of his private signal and truthfully reports his posterior (overweighted)

expectations. In the model, the analyst acts as if he underweights his private information

only if his private information falls within the interval of the �rm�s stock price P0 and the

prior expectations of �rm�s earnings �x. Otherwise, the analyst acts as if he overweights his

private information.

Corollary 3 For all  62 [P0; �x] the analyst issues a forecast as if he overweights his private
information  . That is there exists w � �"

�x+�"
such that xR ( ) = w + (1� w)�x. For

all  2 [P0; �x] the analyst issues a forecast as if he underweights his private information  ,
i.e. w � �"

�x+�"
. The inequalities hold strictly for  62 	NT .

Empirical evidence suggests that analysts overweight their private information when

forming their forecast. Chen and Jiang (2006) provides evidence that analysts place larger

weight on their private information than we would expect them to do if they followed Bayes�

Rule and truthfully reported their posterior expectation (i.e. they overweight their private

information). They �nd that analysts that issue earnings forecasts that are higher than

the consensus overweight their private information more than if they issue forecasts that are

lower than the consensus. If they issue forecasts that are lower than the consensus they

sometimes even underweight their private information. These �ndings are highly consistent

with the predictions of our model. In particular, our model predicts that the analyst always
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acts as if he overweights his private information when his private signal exceeds expecta-

tions ( > �x). When his private signal is less than expectations ( < �x), the analyst acts

as if he either over- or underweight his private information. For  2 [P0; �x] the analyst
underweights his private signal (i.e., w � �"

�x+�"
). For  < P0 the analyst overweights his

private signal, as he does for  > �x. However, if the analyst�s cost function is symmetric,

the weight he assigns to a negative surprise is lower than the weight he assigns to a positive

surprise of the same magnitude (where the surprise is measured as  � �x).

Chen and Jiang (2006) also �nds that the deviation from Bayesian weights increases when

the analysts�bene�ts form doing so are high or when the cost of doing so are low. This em-

pirical �nding is also in line with predictions of our model in that the analyst is fully rational

and his incentives determine the extent to which he acts as if he overweights/underweights

his private information.

Friesen and Weller (2006) also study the bias in analysts�earnings forecasts. In par-

ticular, they develop two models of analysts� earnings forecasts contrasting properties of

unbiased rational forecasts and forecasts of analysts who are overcon�dent about the pre-

cision of their own information (cognitive bias). Their �ndings show that analysts are

overcon�dent and do not act as if they rationally update their beliefs and truthfully report

their expectations. This is consistent with our model�s prediction that truth-telling cannot

be sustained in equilibrium. Similar to the �ndings in Chen and Jiang (2006) and Friesen

and Weller (2006), Easterwood and Nutt (1999) �nd that analysts do not act as if they

rationally update their beliefs and disclose their expectations without any bias. In con-

trast, Easterwood and Nutt (1999) �nd that analysts overreact to positive information and

underreact to negative information leading to a systematically optimistic forecasts. While

our model predicts overreaction to positive information it predicts underreaction only to

slightly negative news ( 2 [P0; �x]). For extremely negative news our model�s prediction

is opposite to Easterwood and Nutt�s �ndings. Since Easterwood and Nutt (1999) do not

partition their tests according to the magnitude of the negative news, their �ndings not

necessarily contradict our model�s predictions. We are not aware of any empirical study

that di¤erentiates analysts�over/underreaction for small and large negative news.

Corollary 2 highlights the e¤ect of the analyst�s incentives on his equilibrium forecasting

strategy. However, the analyst�s equilibrium forecast bias does not only depend on the
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trading commission per share and his cost from biasing his forecast but also on the precision

of his private information. In the model, the precision of his private information, � ", is

given exogenously. In practice, analysts will typically di¤er in the precision of their private

information due to various reasons, e.g., di¤erences in ability, experience, general resources

or access to management.

For any  62 	NT higher precision of the analyst�s private information induces a forecast
bias with a higher absolute value. The intuition is that the informed investor�s demand is

more sensitive to the information conveyed in the analyst�s forecast.19 This provides the

analyst with stronger incentives to bias his forecast, similar to higher trading commission,

cA.

Corollary 4 For any  62 	NT , if g0
�
xR � x

�
is weakly convex in xR then @jb( )j

@�"
> 0.

One might expect that analysts whose private information is of higher precision also

obtain lower squared forecast errors on average. This would unambiguously be the case

if the analyst refrained from biasing his forecast. However, since the analyst does bias

his forecast, and the magnitude of the forecast is increasing in the precision of his private

information, the e¤ect of higher precision on the analyst�s expected squared forecast error

is ambiguous. To see this, note that E [FE2] = V ar (exj ) + E[b(e )2]. Indeed, we show

that for � " su¢ ciently high a further increase in the precision of the analyst�s information

increases rather than decreases his expected squared forecast error. We also show that for � "

su¢ ciently low an increase in the precision of the analyst�s information decreases his expected

squared forecast error for some incentive parameters. In particular, for cA su¢ ciently small,

the analyst�s incentives to bias his forecast are relatively weak. In this case, the e¤ect of

decreasing conditional variance dominates the e¤ect of the increased bias in the analyst�s

forecast, resulting in that the expected forecast error is decreasing in the precision of the

analyst�s private information. This holds as long as the precision of the analyst�s private

signal is not �too high.�

Figure 6 illustrates the e¤ect of di¤erent precisions on the analyst�s expected squared

forecast errors for two di¤erent set of parameters. It emphasizes that the expected squared

19Investor�s demand is more sensitive to the investor�s beliefs about the analyst�s private information  
because of two e¤ects. First, the conditional expectations E [exj ] assign higher weight to the private signal
 . Second, the demand function D1 =

E[exj ]�P0
�V ar(exj ) is steeper since the conditional variance is lower.
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forecast error can be either increasing or decreasing in the precision of the analyst�s private

information for lower values of � ", but is always increasing in � " for su¢ ciently high values

of � ".20

Figure 6: Expected Squared Forecast Error as a Function of � "

The precision of the analyst�s private information does not only a¤ect the expected

squared forecast error but also the expected bias of the forecast. While we were not able

to show that the expected forecast error is monotonically increasing in the precision of the

analyst�s private information, numerical simulations suggest that this is indeed the case.

The following Corollary presents the predictions that we established analytically.

Corollary 5 In the equilibrium of Proposition 2,

(a) lim
�"!1

E [FE2] =1:

(b) lim
�"!1

E [FE] =1 for all symmetric cost functions g (�).

(c) For any � " and � > 0, there exists c�A such that for all cA < c�A E [FE2]j�"+� <

E [FE2]j�" (i.e. that the expected squared forecast error is decreasing over a certain
interval of values of � ").

20The graph illustrates that the expected squared forecast error can be both increasing and decreasing.
However, it does not show monotonicity of the expected squared forecast error with respect to �" in any
region.
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To summarize, the model predicts that analysts with more precise private information

not necessarily issue forecasts that result in smaller expected forecast bias and/or smaller

expected squared forecast errors. This might shed some light on the surprising empirical

�ndings that a¢ liated analysts who are conjectured to possess more precise information

about a �rm do not outperform independent analysts, in the sense of issuing forecasts that

are less biased and result in smaller forecast error (e.g., Gu and Xue 2007).

6 Conclusion

This paper contains a model of the interaction between sell-side analysts and their client-

investors. In the model, the analyst issues a forecast, based on which the investor may decide

to trade. The analyst bene�ts from the investor�s trade in the form of trading commissions

he receives. Since the analyst is not con�ned to unbiased forecasts, his incentives from

trading commissions lead the analyst to bias his forecast. In equilibrium, the analyst trades

o¤ bene�ts from trading commissions against cost from forecast errors. The paper identi�es

and analyzes the unique fully separating equilibrium of this game. It also studies short

sale constraints, uncertainty about the analyst�s incentives and di¤erent levels of investor�s

trading commissions. The paper demonstrates that the existence of the equilibrium is robust

to these extensions and studies their e¤ect on the equilibrium behavior of both the analyst

and the investor.

The model provides several empirical predictions including: (i) the analyst biases his

forecast upward more often than downward and his forecast is on average optimistic if the

cost function is symmetric; (ii) the analyst acts as if he overweights private information if

this private information is favorable. If his private information is su¢ ciently unfavorable, he

also acts as if he overweights it, but to a lesser extent. If his private information is slightly

unfavorable he acts as if he underweights his private information; and (iii) the analyst�s

expected squared forecast error may either increase or decrease in the precision of his private

information. If the precision of his private information is su¢ ciently high, a further increase

in the precision always increases rather than decreases (as one might expect) his expected

squared forecast error. Hence, the model suggests that the relation between an analyst�s

squared forecast error and the precision of his private signal is not necessarily negative and
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depends on the forecasting environment.

Even though part of the model�s novel predictions are supported by existing empiri-

cal studies, the paper also provides additional predictions that have not yet been tested

empirically. These new predictions set the ground for future empirical work that might

shed additional light on the behavior of sell-side analysts and their interaction with their

client-investors.
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7 Appendix

7.1 Proof of D0 = D

We can compute D1 ( ) as

D1 ( ) =

8>>>>><>>>>>:

E[exjxR]�P0�cI
�=(�x+�")

if xR >  � + cI
�x+�"
�"

D0 if  � + cI
�x+�"
�"

>  >  � � cI
�x+�"
�"

E[exjxR]�P0+cI
�=(�x+�")

if  � � cI
�x+�"
�"

> xR

where

 � =
�x + � "
� "

�
D0�

�x + � "
+ P0 �

�x�x
�x + � "

�
: (6)

For notational convenience let the no-trading region be 	NT =
�
 ;  

�
where  =  ��cI �x+�"�"

and  =  � + cI
�x+�"
�"
. Given the optimal D1 ( ) and D0 we can compute the ex-ante

expected utility as

�
Z 1

�1

Z 1

�1
e��[W0+(ex�P0)D1�cI jD1�D0j]f (xj ) g ( ) dxd 

= �
Z  

�1
e
��
�
W0+(E[exj ]�P0)E[exj ]�P0+cI�V ar(exj ) +cI

�
E[exj ]�P0+cI
�V ar(exj ) �D0

�
� �
2

�
E[exj ]�P0+cI
�V ar(exj )

�2
V ar(exj )�

g ( ) d 

�
Z  

 

e��[W0+(E[exj ]�P0)D0� �
2
D2
0V ar(exj )]g ( ) d 

�
Z 1

 

e
��
�
W0+(E[exj ]�P0)E[exj ]�P0�cI�V ar(exj ) �cI

�
E[exj ]�P0�cI
�V ar(exj ) �D0

�
� �
2

�
E[exj ]�P0�cI
�V ar(exj )

�2
V ar(exj )�

g ( ) d 

The informed investor chooses D0 that maximizes his ex-ante expected utility taking into

account his optimal trading strategy at t = 1. Equation (6) shows a one-to-one relation

between  � andD0. Hence, solving for the optimalD0 is equivalent to solving for the optimal

 �. One can show that the informed investor�s objective is to choose  � that maximizes the

following expression.

max
 �

k

Z 1

�1
� ( ;  �)� ( ) d (7)

where k is a positive constant, � ( ) denotes the pdf of a normal distribution with mean P0

and precision � " and

� ( ;  �) =

8>>><>>>:
�ec

I E[exj �]�E[exj ]� 1
2 cI

V ar(exj ) if  <  

�e
(E[exj ]�E[exj �])2

2V ar(exj ) if  �  �  

�ec
I E[exj ]�E[exj �]� 1

2 cI
V ar(exj ) if  <  

.
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� ( ;  �) is continuous, symmetric around  � with a unique global maximum at  =  �.

From this it follows that the  � that maximizes (7) equals P0. Solving (3) for  � = P0

yields D0 = D = S.

7.2 Proof of Proposition 1

The analyst�s optimization problem is

max
xR

uA
�
xR;  

�
= cA

��D1

�
xR
�
�D0

��� E
�
g
�
xR � ex��� � .

When solving for his optimal forecast, the analyst takes the informed investor�s demand as

given. Since the informed investor�s demand, D1

�
xR
�
, is monotonically increasing in xR

and D1 (x
�) = D0 we can rewrite the analyst�s optimization problem as

max
xR

uA
�
xR;  

�
=

�
cA
�
D1

�
xR
�
�D0

�
� E

�
g
�
xR � ex��� � if xR � x�

cA
�
D0 �D1

�
xR
��
� E

�
g
�
xR � ex��� � if xR < x�

where the informed investor�s demand is given by

D1

�
xR
�
=
xR �bb �xR�� P0

�V ar (exj )
and bb �xR� denotes investors�believes about the bias given the analyst�s forecast xR. Taking
the informed investor�s demand function, D1

�
xR
�
, and beliefs, bb �xR�, as given, the analyst

maximizes

uA
�
xR;  

�
=

8>><>>:
cA

�
xR�bb(xR)�P0
�V ar(exj ) �D0

�
� E

�
g
�
xR � ex��� � if xR � x�

cA

�
D0 �

xR�bb(xR)�P0
�V ar(exj )

�
� E

�
g
�
xR � ex��� � if xR < x�

Then, the (local) FOCs to the analyst�s optimization problem are given by8>><>>:
cA

1�
@bb(xR)
@xR

�V ar(exj ) � @
@xR

E
�
g
�
xR � ex��� � = 0 if xR > x�

�cA
1�

@bb(xR)
@xR

�V ar(exj ) � @
@xR

E
�
g
�
xR � ex��� � = 0 if xR < x�

In equilibrium we need that

xR ( ) = E [exj ] +bb �xR�
With that,

@bb �xR�
@xR

=
@b ( )

@ 

1
@xR

@ 

= b0 ( )
1

@E[exj ]
@ 

+ b0 ( )
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where @E[exj ]
@ 

= �"
�x+�"

. With that we can rewrite the FOC as a function of b ( )8>><>>:
cA

1�b0( ) 1
@E[exj ]
@ 

+b0( )

�V ar(exj ) � @
@b
E [g (E [exj ] + b� ex)j ] = 0 if  > P0

�cA
1�b0( ) 1

@E[exj ]
@ 

+b0( )

�V ar(exj ) � @
@b
E [g (E [exj ] + b� ex)j ] = 0 P0 >  

(8)

(substituting b
�
xR
�
for bb �xR�)8<: cA
1�b0(xR)
�V ar(exj ) � @

@b
E [g (E [exj ] + b� ex)j ] = 0 if xR > x�

�cA
1�b0(xR)
�V ar(exj ) � @

@b
E [g (E [exj ] + b� ex)j ] = 0 if xR < x�

(9)

Solving for b0
�
xR
�
yields(

b0
�
xR
�
= 1� �V ar(exj )

cA

@
@b
E [g (E [exj ] + b� ex)j ] if xR > x�

b0
�
xR
�
= 1� �V ar(exj )

cA

@
@b
E [g (E [exj ] + b� ex)j ] if xR < x�

We know that for xR = x� the analyst does not bias his forecast, i.e. @
@b
E [g (E [exj ] + b� ex)j ] =

0. Hence, the RHS is continuous in xR at xR = x�. From the Fundamental Theorem of

Di¤erential Equations it follows that there exists a solution b
�
xR
�
. Since b

�
xR
�
is bounded

and continuous there always exists a b ( ) that solves the following equation.

b ( )� b
�
xRjxR = E [exj ] + b ( )

�
= 0

Since there is a solution to the FOC which includes consistent investor beliefs, there exists

an equilibrium.

7.3 Proof of Proposition 2

The informed investor�s certainty equivalent given the forecast xR is

E
�
U (D1) jxR

�
= W0 +D1

�
E
�exjxR�� P0

�
� cI jD1 �D0j �

�

2
D2
1V ar

�exjxR� :
The FOC for xR su¢ ciently high such that trade occurs yields

E
�exjxR�� P0 � cI � �D1

1

�x + � "
= 0

E
�exjxR�� P0 � cI

�V ar (exjxR) = D1

The highest signal xR for which no trade occurs is given by D1 = D0, where D0 =
�x�P0
�

�x.

Let bq �xR� denote investors�beliefs about E �exjxR�. Suppose bq �xR� is strictly increasing in
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xR (due to the full separation of the equilibrium). Note that V ar
�exjxR� = V ar (exj ) : This

holds because V ar (exj ) does not depend on the realization  and the equilibrium is fully

separating.

bq �xR�� P0 � cI

�V ar (exjxR) =
�x � P0

�
�x

bq �xR� =
�x�x + P0� "
�x + � "

+ cI

So, xR = bq�1 �P0 + cI
�x+�"
�x

�
is the highest forecast for which there will be no trade. Then,

investors�demand function is given by

D1

�
xR
�
=

8>><>>:
bq(xR)�P0�cI
�V ar(exjxR) if bq �xR� > �x�x+P0�"

�x+�"
+ cI

D0 if �x�x+P0�"
�x+�"

+ cI > bq �xR� > �x�x+P0�"
�x+�"

� cIbq(xR)�P0+cI
�V ar(exjxR) if �x�x+P0�"

�x+�"
� cI > bq �xR�

Taking investors� demand function as given, the analyst�s objective function UA
�
 ; xR

�
equals8>>>><>>>>:

cA

� bq(xR)�P0�cI
�V ar(exjxR) �D0

�
� E

�
g
�
xR � ex��� � if bq �xR� > �x�x+P0�"

�x+�"
+ cI

�E
�
g
�
xR � ex��� � if �x�x+P0�"

�x+�"
+ cI > bq �xR� > �x�x+P0�"

�x+�"
� cI

�cA
� bq(xR)�P0+cI

�V ar(exjxR) �D0

�
� E

�
g
�
xR � ex��� � if �x�x+P0�"

�x+�"
� cI > bq �xR�

Taking investors�beliefs bq �xR� = xR�bb �xR� as given, the analyst�s optimal forecast is given
by8>>>><>>>>:

cA
1�

dbb(xR)
dxR

�V ar(exjxR) � @
@xR

E
�
g
�
xR � ex��� � = 0 if bq �xR� > �x�x+P0�"

�x+�"
+ cI

@
@xR

E
�
g
�
xR � ex��� � = 0 if �x�x+P0�"

�x+�"
+ cI > bq �xR� > �x�x+P0�"

�x+�"
� cI

�cA
1�

dbb(xR)
dxR

�V ar(exjxR) � @
@xR

E
�
g
�
xR � ex��� � = 0 if �x�x+P0�"

�x+�"
� cI > bq �xR�

imposing the equilibrium condition that investors�conjecture coincides with analysts�fore-

casting strategy bq �xR ( )� = E [exj ]
This implies that

bq �xR ( )� >
�x�x + P0� "
�x + � "

+ cI ,  > P0 + cI
�x + � "
� ebq �xR ( )� <

�x�x + P0� "
�x + � "

� cI ,  < P0 � cI
�x + � "
� e
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With this we can rewrite the analyst�s FOC as8>>>><>>>>:
cA

1�b0( ) 1
@E[exj ]
@ 

+b0( )

�V ar(exj ) � @
@b
E [g (E [exj ] + b� ex)j ] = 0 if  > P0 + cI

�x+�"
�"

@
@b
E [g (E [exj ] + b� ex)j ] = 0 P0 + cI

�x+�"
�"

>  > P0 � cI
�x+�"
�"

�cA
1�b0( ) 1

@E[exj ]
@ 

+b0( )

�V ar(exj ) � @
@b
E [g (E [exj ] + b� ex)j ] = 0 P0 � cI

�x+�"
�"

>  

The FOC of the �rst and third case are identical to the di¤erential equation that we solved

above (see equation 8). So, the only di¤erence is the boundary condition b
�
P0 + cI

�x+�"
�"

�
=

0 for the right bound and b
�
P0 � cI

�x+�"
�"

�
= 0 for the left bound. We know that type

 = P0 + cI
�x+�"
�"

does not want to mimic any type higher than P0 + cI
�x+�"
�"
. As a result,

any type  < P0 + cI
�x+�"
�"

also does not want to mimic any type higher than P0 + cI
�x+�"
�"

because his marginal cost of mimicing are even higher than those of type  = P0 + cI
�x+�"
�"

and the marginal bene�ts are the same.

Hence, the optimal bias function and investors�beliefs are consistent with the Proposi-

tion.

7.4 Short-Selling Restrictions

Investors�maximize their certainty equivalent subject to D1 � �s. Here, s is the maximum
number of shares an investor can short sell. As a result, the maximum number of shares

he can sell is the sum of s and his initial holdings D0. To simplify the notation, we assume

that cI = 0: However, none of the arguments is qualitatively a¤ected for cI > 0.

Claim 7 If the investor faces a short sale constraint of s, there is an equilibrium de�ned as

follows.

(i) The analyst�s optimal forecasts is given by

xR ( ) =

8<:
E [exj ] + b ( ) if  �  
E
�exj �+ b

�
 
�

if  >  �  0

E [exj ] if  <  0

where b ( ) denotes the analyst�s equilibrium bias in the absence of any short sale

restrictions and  is the private signal for which the short sale constraint becomes

binding, that is

 =

�
P0 � �s

�x+�"

�
(�x + � ")� �x�x

� "

34



Note that all types  2
�
 0;  

�
issue the same pooling forecast xRpool = E

�exj �+ b � �.
All types  �  0 do not bias their forecast.  0 is given by

 0 =  +
�x + � "
� "

b
�
 
�
.

Note that  <  � implies that b
�
 
�
< 0.

(ii) The informed investor�s demand is given by

D1

�
xR
�
=

(
q(xR)�P0
�V ar(exj ) if xR � E

�exj �
�s otherwise

where q
�
xR
�
is investors�expectation of the �rm�s earnings given the analyst forecast.

q
�
xR
�
=

8<:
xR � b

�
xR
�

if xR > xRpool
E
�exj 2 � 0;  �� if xR = xRpool

xR if xRpool > xR

where b
�
xR
�
denotes investors�inferences about the analyst�s bias if the forecast is xR.

Proof. Note that whenever a pooling report occurs, investors� beliefs about the �rm�s

earnings are no longer normally distributed. Hence, we cannot rely on the standard result

that investors�certainty equivalent takes the mean-variance form. To resolve this problem,

we �rst show that investors�demand, in the absence of short sale constraints, following a

pooling report over the interval
�
 0;  

�
is increasing in  0. This guarantees that the demand

given that  2
�
 0;  

�
is lower than the demand given that  =  . This result is not

trivial since if investors learn that  2
�
 0;  

�
the conditional variance V ar

�
xj 2

�
 0;  

��
is higher than the conditional variance V ar

�
xj 
�
. When we compare investors�demand

if they learn  2
�
 0;  

�
versus  =  ; we need to consider two opposite e¤ects. First,

the fact that E
�
xj 2

�
 0;  

��
< E

�
xj 
�
causes investors�demand following  2

�
 0;  

�
to be more negative/lower (holding all else constant). On the other hand, the fact that

V ar
�
xj 2

�
 0;  

��
> V ar

�
xj 
�
causes investors�demand following  2

�
 0;  

�
to be less

negative/higher (holding all else constant). Once, we establish the above result, the reminder

of the proof is straight forward.

Investor�s demand following a pooling report
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Let f (exj
) denote the conditional probability distribution of ex given investors�informa-
tion set 
.

max
D1��s

E
�
U (D1) jxR

�
= �

Z 1

�1
e��(Wo+D1(ex�P0))f �exjxR� dx

For notational convenience let

k (x;D1) = e��(Wo+D1(ex�P0)) (ex� P0)

First, we solve the unconstrained optimization problem in the absence of any short sale

restriction. There is always an interior solution Du
1 to the unconstrained optimization

problem. The FOC yields Z 1

�1
k (ex;Du

1 ) f
�exjxR� dx = 0

Following a separating forecast, where investor learns that
�
 j
�
xR ( ) = xR

�	
=  , we haveZ 1

�1
k (ex;Du

1 ) f (exj ) dx = 0
For notational convenience let

K ( ) =

Z 1

�1
k (ex;D1) f (exj ) dx

We know that Du
1 ( ) is strictly increasing in  . We also know that

@K ( )

@D1

= ��
Z 1

�1
e��(Wo+D1(ex�P0)) (ex� P0)

2 f (exj ) dx < 0
From the Implicit Function Theorem it follows that

@Du
1 ( )

@ 
= �

@K( )
@ 

@K( )
@D1

> 0

and hence
@K ( )

@ 
> 0:

Following a pooling forecast, where the investor learns that
�
 jxR ( ) = xR

	
=
�
 0;  

�
, we

have Z 1

�1
k (ex;Du

1 ) f
�exj 2 � 0;  �� dx = 0

Applying the law of iterated expectations, we can rewrite the FOC asZ  

 0

�Z 1

�1
k (ex;Du

1 ) f (exj ) dx�h�e ��� e 2 � 0;  �� d = 0 (10)
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where h (�) denotes the (conditional) probability density function of  . We want to show

that Du
1

�
 2

�
 0;  

��
is increasing in  0. With K ( ) =

R1
�1 k (ex;Du

1 ) f (exj ) dx we can
rewrite (10) as Z  

 0
K ( )h

�e ��� e 2 � 0;  �� d = 0
We know that

@

@D1

Z  

 0
K ( )h

�e ��� e 2 � 0;  �� d = Z  

 0

@K ( )

@D1

h
�e ��� e 2 � 0;  �� d < 0.

If we can show that
@

@ 0

Z  

 0
K ( )h

�e ��� e 2 � 0;  �� d > 0 (11)

then it follows from the Implicit Function Theorem that Du
1

�
 2

�
 0;  

��
is increasing in  0.

We can rewrite (11) as

@

@ 0

Z  

 0
K ( )

h ( )

H
�
 
�
�H ( 0)

d > 0

where h (�) and H (�) denote the pdf and cdf of  respectively.

@

@ 0

Z  

 0
K ( )

h ( )

H
�
 
�
�H ( 0)

d =

Z  

 0
K ( )

h ( )h ( 0)�
H
�
 
�
�H ( 0)

�2d �K ( 0)
h ( 0)

H
�
 
�
�H ( 0)

=
h ( 0)

H
�
 
�
�H ( 0)

 Z  

 0
K ( )

h ( )

H
�
 
�
�H ( 0)

d �K ( 0)

!

=
h ( 0)

H
�
 
�
�H ( 0)

Z  

 0
(K ( )�K ( 0))

h ( )

H
�
 
�
�H ( 0)

d > 0

which follows from K ( ) being increasing in  .

So, if the investor learns that  2
�
 0;  

�
for any  0 <  (which is the case following a

pooling report) then his demand satis�es the following

Du
1

��
 0;  

��
< Du

1

�
 
�

This implies that the informed investor�s demand following the pooling forecast (where the

pooling interval can be of any size) is lower than his demand if he learns that  =  .

Equilibrium forecasting strategy

In this part we show that the analyst does not want to deviate from the forecasting strategy
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in the Claim.

For any  >  the equilibrium forecast and the investor�s beliefs are exactly the same as

in the equilibrium without any short sale constraints. This guarantees that none of the

types  >  will deviate to any other xR > xR
�
 
�
. In addition, none of the types  >  

will deviate to a report xR � xR
�
 
�
. To see that, note that all reports xR < xR

�
 
�
will

not generate more trade than xR
�
 
�
but will induce higher expected cost from forecasting

errors.

For any  2
�
 0;  

�
the equilibrium forecast is xRpool. Clearly, an analyst that observes any

 2
�
 0;  

�
would never issue a forecast that is lower than xRpool. The reason is that a lower

report would not increase the trade but it would increase the cost associated with the bias

since xRpool � E [exj ] for any  2 � 0;  �. Since the type  =  does not want to mimic

any type  >  (this follows because the type  does not want to mimic any  >  in the

equilibrium without short sale constraints), any type  <  also does not want to mimic

any type  >  (it is even more costly for  <  to mimic any type  >  ). Hence, an

analyst that observes any  2
�
 0;  

�
does not want to issue a report xR > xRpool.

For any  <  0 the equilibrium forecast is E [exj ]. This forecast minimizes his expected cost
from forecast errors and induces the maximum trade. Hence, the analyst has no incentive

to deviate.

7.5 Unknown analyst�s objective function

Suppose analysts observe  and �, where e� � N (0; ��) and analyst�s objective is to maximize

cA
��D1

�
xR
�
�D0

��� Z g
�
xR � ex� �

�
f (xj ) dx

Before we show the existence of an equilibrium to this game, we show that there exists an

equilibrium to a modi�ed game. In the modi�ed game, � is common knowledge, i.e. both

the analyst and the investor learn � at the beginning of the period. For each realization of �,

we solve for the equilibrium forecast and equilibrium trade. We then relax the assumption

that the investor observes �.

In the modi�ed game, not only the analyst�s biasing cost function g
�
xR � ex� �

�
but

also his bene�t is a function of �. The analyst�s objective function is given by

cA

�����xR �bb
�
xR; �

�
+ � � P 00

�0V ar (xj ) �D0

������
Z
g
�
xR � ex� �

�
f (xj ) dx
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where xR �bb �xR; �� = E [exj ]. Since � is common knowledge and the demand is linear in
the conditional expectation, the modi�ed game has a solution similar to the one established

in Propositions 1 and 2. Hence, there exists a unique fully separating equilibrium. In such

a fully separating equilibrium, the investor can infer  from the analyst�s forecast. Since

xR ( ; �) = E [xj ] + b ( ; �), solving for the optimal bias b ( ; �) is equivalent to solving for
the optimal forecast xR ( ; �). One can show that for any �; the equilibrium bias satis�es

the following equation.21

b ( ; �) = b

�
 +

�x + � "
� "

�; 0

�
+ �

First, note that xR ( ; �) depends on ( ; �) only through y; where y = E [exj ] + �. To see
this consider

xR ( ; �) = E [xj ] + b ( ; �)

= E [xj ] + b

�
 +

�x + � "
� "

�; 0

�
+ �

= y + b

�
� "

� " + �x
y; 0

�
� xR (y)

For notational convenience let q
�
xR
�
= y denote the inverse function of xR (y).

Since xR (y) is an equilibrium for a known �, we have E
�
xjxR; �

�
= q

�
xR
�
� � in

equilibrium. With that, we can rewrite the analyst�s optimization problem as

cA

�����E
�
xjxR; �

�
+ � � P 00

�0V ar (xj ) �D0

������
Z
g
�
xR � ex� �

�
f (xj ) dx

= cA

�����q
�
xR
�
� P 00

�0V ar (xj ) �D0

������
Z
g
�
xR � ex� �

�
f (xj ) dx (12)

Next, we show that this xR (y) is the analyst�s equilibrium forecasting strategy not only in

the modi�ed game but also in the original game when � is unknown and the coe¢ cients have

their original values. To show that xR (y) is the equilibrium forecast, we assume that if the

investor believes that the analyst�s forecasting strategy is xR (y) then it is in fact optimal

21We can think of the analyst bias as a function of E [exj ] and � which yields b (E [exj ] ; �) =
b (E [exj ] + �; 0) + �: To see that note that the cost minimizing bias increases by � while the conditional
expectation of x for which the analyst�s bene�t is zero decreases by �.

39



for the analyst to follow this strategy. If the investor believes that the analyst forecasts

according to xR (y) then the investor�s trade is given by�����E
�
xjxR

�
� P0

�V ar (xjy) �D0

�����
where the posterior expectation and variance are

E
�
xjxR

�
= E

�
xjq
�
xR
�
= y
�
=
� "��q

�
xR
�
+ (�x + � ") �x�x

� "�� + (�x + � ") �x

V ar
�
xjxR

�
= V ar (xjy) = 1

�x
� � "��
� "�� + (�x + � ") �x

� "
�x + � "

1

�x

Hence, the analyst�s optimization problem is equivalent to (12) if

�0 = �
� "�� + (�x + � ") �x

� "��

V ar (xjy)
V ar (xj )

P 00 = P0
� "�� + (�x + � ") �x

� "��
� (�x + � ")

� "��
�x�x

To verify that the modi�ed game is equivalent to the original game we plug the above values

for �0 and P 00 into the analyst�s optimization problem in (12).

cA

�����q
�
xR
�
� P 00

�0V ar (xj ) �D0

�����
= cA

������
q
�
xR
�
�
�
P0

�"��+(�x+�")�x
�"��

� (�x+�")
�"��

�x�x

�
� �"��+(�x+�")�x

�"��

V ar(xjy)
V ar(xj )V ar (xj )

�D0

������
= cA

�����q
�
xR
�

�"��
�"��+(�x+�")�x

� P0 +
(�x+�")�x�x

�"��+(�x+�")�x

�V ar (xjy) �D0

�����
= cA

�����E
�
xjxR

�
� P0

�V ar (xjy) �D0

�����
Since the analyst�s optimization problem is equivalent to (12), the analyst�s optimal forecast

will also be xR (y). Hence, the investor�s beliefs q
�
xR
�
are consistent with the analyst�s

forecasting behavior. Thus, xR (y) and q
�
xR
�
constitute an equilibrium.

7.6 Proof of Proposition 3

There is a unique fully separating equilibrium. For  >  �. The analyst maximizes

cA
xR �bb �xR�� P0

�V ar (xj ) � 1
2
E
h�
xR � ex�2��� i
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where bb �xR� denotes investor�s beliefs about the bias if he observes xR. Then, the FOC is
cA
1� @bb(xR)

@xR

�V ar (exj ) � E
�
xR � ex�� � = 0

cA
1� @bb(xR)

@xR

�V ar (exj ) � �xR � E [exj ]� = 0

cA
1� @bb(xR)

@xR

�V ar (exj ) � b ( ) = 0 (13)

In equilibrium, investor�s beliefs about the bias has to be correct, i.e.,

bb �xR ( )� = b ( ) :

We also know that (boundary condition)

b ( �) = 0

With that,
@bb �xR�
@xR

=
@b ( )

@ 

1
@xR

@ 

= b0 ( )
1

@E[exj ]
@ 

+ b0 ( )

where @E[exj ]
@ 

= �"
�x+�"

and the FOC becomes

cA

1� b0 ( ) 1
@E[ exj ]
@ 

+b0( )

�V ar (exj ) � b ( ) = 0

cA

�
@E [exj ]

@ 
+ b0 ( )

�
� cAb

0 ( ) = b ( ) �V ar (exj )�@E [exj ]
@ 

+ b0 ( )

�
cA
@E [exj ]

@ 
= b ( ) �V ar (exj )�@E [exj ]

@ 
+ b0 ( )

�
0 = b ( ) + b0 ( ) b ( )

�x + � "
� "

� cA (�x + � ")

�

(Suppose there are two equilibria. Since we have the boundary condition, it must be the

case that there is an interval of types for which b ( ) increases at a higher rate in one

of the equilibria. In order for that to be an equilibrium it must be that the conditional

expectation is increasing in the report at a higher rate as well (marginal cost = marginal

bene�t). However, if the bias increases at a higher rate, this implies that the conditional

expectation must be increasing in the report at a lower rate. Hence, there cannot be two

equilibria.)
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Solution to di¤erential equation. We need to solve

b ( ) + k1b ( ) � b0 ( ) + k2 = 0

where k1 = �x+�"
�"

and k2 = � cA(�x+�")
�

. The boundary condition is b ( �) = 0 where  � = P0.

It follows from the Fundamental Theorem of Di¤erential Equations that there is a unique

solution. The unique solution to this di¤erential equation is (from Mathematica)

b ( ) = �k2
�
1 + PL

�
�e

 �P0
k1k2

�1
��

and hence

b ( ) =
cA (�x + � ")

�

�
1 + PL

�
�e�

( �P0)�"�
cA(�x+�")

2�1
��

(14)

where PL (�) denotes the ProductLog function. The ProductLog function does not have

a closed form solution but is de�ned as the solution to the following di¤erential equation:

f 0 (x) = f(x)
x(1+f(x))

.

Alternatively from (13) ; we can solve the following di¤erential equation.

1� b0
�
xR
�
� b
�
xR
� �
cA
V ar (exj ) = 0 (15)

The boundary condition to this di¤erential solution is

b
�
xR ( )

���
 = �

= b (E [exj �] + b ( �)) = b (E [exj �]) = b (x�) = b

�
�x�x + P0� "
�x + � "

�
= 0

The unique solution to this di¤erential equation is

b
�
xR
�
=
1

a0

�
1� ea0(a1�x

R)
�

where a0 =
�
cA
V ar (exj ) = �

cA(�x+�")
and b (a1) = 0. Hence,

b
�
xR
�
=
cA (�x + � ")

�

�
1� e

�
cA(�x+�")

(�x�x+P0�"�x+�"
�xR)

�
Next, we check that the solution for b ( ) and b

�
xR
�
are consistent in the sense that

b
�
xR ( )

�
= b ( ).

b
�
xR ( )

�
=

cA (�x + � ")

�

�
1� e

�
cA(�x+�")

(�x�x+P0�"�x+�"
�xR( ))

�
=

cA (�x + � ")

�

�
1� e

�
cA(�x+�")

(�x�x+P0�"�x+�"
�E[exj ]�b( ))�

=
cA (�x + � ")

�

�
1� e

�
cA(�x+�")

�
�x�x+P0�"
�x+�"

� �" +�x�x
�x+�"

�b( )
��

=
cA (�x + � ")

�

�
1� e

�
cA(�x+�")

( �"
�x+�"

(P0� )�b( ))
�
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Solution to that implicit equation from Mathematica

b ( ) =
1 + PL

�
�e

�
cA(�x+�")

( �"
�x+�"

(P0� ))�1
�

�
c(�x+�")

=
cA (�x + � ")

�

�
1 + PL

�
�e

�
cA(�x+�")

(� �"
�x+�"

( �P0))�1
��

(16)

So, we have that (14) and (16) are identical.

Finally, we derive the solution for  <  � and xR < x�. The di¤erential equation for

b ( ) is

�cA
1� b0 ( ) 1

@E[ exj ]
@ 

+b0( )

�V ar (exj ) � b ( ) = 0

�cA
@E [exj ]

@ 
= b ( ) �V ar (exj )�@E [exj ]

@ 
+ b0 ( )

�
0 = b ( ) + b0 ( ) b ( )

�x + � "
� "

+
cA (�x + � ")

�

The boundary condition remains unchanged and hence

b ( ) = �cA (�x + � ")

�

�
1 + PL

�
�e�

(P0� )�"�
cA(�x+�")

2�1
��

for  <  �

Similarly, the di¤erential equation for b
�
xR
�
is

1� b0
�
xR
�
+ b
�
xR
� �
cA
V ar (exj ) = 0

The unique solution to this di¤erential equation is

b
�
xR
�
= �cA (�x + � ")

�

�
1� e

�
cA(�x+�")

(xR��x�x+P0�"
�x+�"

)
�
for  <  �

SOC to the analyst�s forecasting problem.

@

@xR

0@cA 1� @b(xR)
@xR

�V ar (xj ) �
�
xR � E [xj ]

�1A = �cA

@2b(xR)
@(xR)2

�V ar (xj ) � 1

= �cA
� �
c(�x+�")

e
�

cA(�x+�")
(�x�x+P0�"�x+�"

�xR)

�V ar (xj ) � 1

= e
�

cA(�x+�")
(�x�x+P0�"�x+�"

�xR) � 1 < 0
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7.6.1 ProductLog(x)

The Pr oductLog (x) function (also known as Lambert-W or Omega function) is the solu-

tion to the di¤erential equation f 0 (x) = f(x)
x(1+f(x))

: It is de�ned to any x � �e�1, where
Pr oductLog (�e�1) = �1; Pr oductLog (0) = 0 and lim

x!1
Pr oductLog (x) = 1: The chart

below demonstrates the Pr oductLog (x) function.

1 2 3 4 5

­1.0

­0.5

0.5

1.0

x

ProductLog(x)

7.7 Proofs of Empirical Predictions

For simpilicity we present the proof for the empirical predictions under the assumption that

cI = 0. Similar arguments can be made for the more general case of cI � 0.

7.7.1 Proof of Corollary 1 - Expected bias is positive

Suppose that the cost function g
�
xR � x

�
is symmetric around zero.

Then b ( ) = �b (2 � �  ). Given that  � < �x and the symmetry of the distribution

function around �x the pdf of  is higher than the pdf of 2 
� �  for any  >  �. Hence

the expected bias is positive.

7.7.2 Proof of Corollary 2 �Comparative statics with respect to cA

Part (a). The analyst�s FOC as given in (8) is8<: cA
�"

�"+�x

�V ar(exj )( �"
�"+�x

+b0( ))
� @

@b
E [g (E [exj ] + b� ex)j ] = 0 if  >  �

�cA
�"

�"+�x

�V ar(exj )( �"
�"+�x

+b0( ))
� @

@b
E [g (E [exj ] + b� ex)j ] = 0 if  � >  
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Applying the implicit function theorem to the LHS of the analyst�s FOC yields

@b ( )

@cA
= �

@FOC
@cA
@FOC
@b

= �

�"
�"+�x

�V ar(exj )( �"
�"+�x

+b0( ))
@FOC
@b

> 0 if  >  �

@b ( )

@cA
= �

@FOC
@cA
@FOC
@b

= �
�

�"
�"+�x

�V ar(exj )( �"
�"+�x

+b0( ))
@FOC
@b

< 0 if  >  �

where @FOC
@b

< 0 because we are at a local maximum.

Part (b). We �rst want to show that @E[�FE]
@cA

= @E[b( )]
@cA

> 0. For any symmetric cost

function we have,

E [b ( )] =

Z 1

 �
b ( ; cA) [f ( )� f (2 � �  )] d 

and hence
@E [b ( )]

@cA
=

Z 1

 �

@b ( ; cA)

@cA
[f ( )� f (2 � �  )] d > 0

because @b( ;cA)
@cA

> 0 and [f ( )� f (2 � �  )] as well as  � are independent of cA.

Next we show that
@E[FE2]
@cA

> 0. Since the magnitude of b ( ) is increasing in cA for all

 6=  �; the expected squared bias is also increasing in cA. The conditional variance of x

does not depend on cA.

Part (c). Noting that
�"

�"+�x

�V ar(exj )( �"
�"+�x

+b0( ))
is �nite, the analyst�s marginal trading com-

missions approaches 0 as cA ! 0. From this it follows that in equilibrium his expected mar-

ginal cost from biasing his forecast also approaches zero as cA ! 0, and hence lim
cA!0

b ( ) = 0.

7.7.3 Comparative statics of the bias with respect � "

Suppose that @g(FE)
@FE

= @g(b+")
@b

is weakly convex in b (note that for a given b; @g(b+")
@b

is

independent of  ).

The marginal expected cost is decreasing in � ". An decrease in � " may be achieved by a

series of Mean Preserving Spreads (MPS). Given the weak convexity of @g(b+")
@b

; the expected

value of @g(b+")
@b

is weakly increasing following any MPS and hence following a decrease in � ".

This implies that @2E[g(b+")]
@�"@b

� 0.
In order to show that for any two precisions of private signals, � 1" > � 0" and any  >  �

the bias of type 1 is higher than the boas of type 0, we �rst show that for  going to in�nity
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the bias of type 1 is higher than that of type 0, and next we show that the biases of the two

types cannot intersect.

For  going to in�nity the bias is bounded and converges to a constant, so the investor�s

expectation about ex is linear in the forecast with a slope of one. As a result of this and
� 1" > � 0" the marginal bene�t (which equals, in equilibrium, the marginal expected cost) of

type 1 from biasing his forecast is higher. The fact that @2E[g(b+")]
@�"@b

� 0 implies that @E[g(b+")]
@b

is higher for type 1 only if the bias of type 1 when  goes to in�nity is higher.

Suppose that the bias functions of the two types intersect. Since the bias is zero at  �

for both types, then there must be a  �  � for which the two biases are identical and

the bias function of type 0 has a higher slope. At this point where the biases are identical,

the marginal expected cost is higher for type 0 since @2E[g(b+")]
@�"@b

� 0. However, the marginal
bene�t from biasing the forecast is lower for type 0 because both the slope of his bias function

is higher and the precision of his forecast is lower. This contradiction implies that the bias

of type 1 is always higher than the bias of type 0 for any  >  �. A similar argument can

be made for all  <  �.

7.7.4 Proof of Corollary 5 �Expected squared forecast error and Expected
forecast error

We start by proving part (b) :

Part (b). First we show that lim
�"!1

E [FE] = �1. For � " ! 1 the distribution of

 converges to the distribution of x, i.e., for any  >  � lim
�"!1

[f ( )� f (2 
� �  )] =

[fx ( )� fx (2 
� �  )] > 0 where fi (�) denotes the pdf of the random variable i. Next, we

show that lim
�"!1

b ( ) =1 for all  >  �.

As � " !1 the analyst�s marginal bene�t from biasing his forecast (which is the marginal

trading commissions generated by his forecast) goes to in�nity as well, as long as the bias

function has a �nite slope (which holds for all  6=  �). The reason is that following the

analyst�s forecast, the investor is not exposed to any risk (in our fully revealing equilibrium)

and hence his trade is in�nitely sensitive to the analyst�s forecast. In equilibrium, the

analyst�s marginal bene�t equals his marginal expected cost, and hence his marginal expected

cost for � " !1 must be in�nite as well. Since this holds for any  , we have lim
�"!1

b ( ) =1
for all  >  �.
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Recall that lim
�"!1

[f ( )� f (2 
� �  )] > 0 and due to the symmetry of g (�) we have

E [b ( )] =
R1
 � b ( ) [f ( )� f (2 � �  )] d . From this it follows that lim

�"!1
E [b ( )] =1.

Part (a). Next, we show that lim
�"!1

E [FE2] =1. Consider that E [FE2] = E
�
b ( )2

�
+

1
�x+�"

. As � " !1, for any  6=  � b ( )2 goes to in�nity and the distribution of  converges

to the distribution of x (i.e. there is no mass point at  =  �). Hence, while integrating

over  the only point in which the bias is bounded (=0) is  =  � which has zero mass.

Part (c). Recall that the bias is bounded for any set of parameters. In part (a)

of corollary 2 we showed that for any  @jb( ;cA)j
@cA

> 0. Part (c) of corollary 2 shows that

lim
cA!0

b ( ; cA) = 0. Hence the upper (lower) bound of the bias is increasing (decreasing) in cA

and converges to zero as cA goes to zero.

Note that: E [FE2] = E
�
b ( ; cA)

2�+ 1
�x+�"

: We want to show that there exists c�A such

that for any cA < c�A, an increase of � " by � is followed by a decrease in the variance which

is greater than the increase in the expected squared bias. Assume without loss of generality

that lim
 !1

b ( ; cA)j�"+� � � lim
 !�1

b ( ; cA)j�"+�.

0 < E
�
b ( ; cA)

2���
�"

E
�
b ( ; cA)

2���
�"+�

<

�
lim
 !1

b ( ; cA)j�"+�
�2

From that we know that

E
�
b ( ; cA)

2���
�"+�

� E
�
b ( ; cA)

2���
�"
<

�
lim
 !1

b ( ; cA)j�"+�
�2

Note that the upper bound is monotone increasing in cA and continuous. For cA ! 0 the

upper bound goes to zero as well.

When � " increases by �, the conditional variance of x given  decreases by

1

�x + � "
� 1

�x + � " + �

Hence, there exist a c�A such that

1

�x + � "
� 1

�x + � " + �
=

�
lim
 !1

b ( ; c�A)j�"+�
�2

and hence for any cA < c�A we have�
lim
 !1

b ( ; cA)j�"+�
�2
�
�

1

�x + � "
� 1

�x + � " + �

�
< 0
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that is, the increase in the expected squared bias is smaller than the decrease in the condi-

tional variance. As a result the expected squared forecast error decreases as � " increases by

�.

7.8 Optimal Cost Function Coe¢ cient

We show for the case of a quadratic cost function, that the analyst�s preferred cost function

coe¢ cient is not arbitrarily small. To capture this idea, we allow the coe¢ cient of the

analyst�s cost function to be di¤erent from 1. In particular, we assume that the analyst�s

cost from forecast errors are �
2

�
xR � ex�2 for � � 0. That is the analyst�s payo¤ function is

given by

uA
�
xR;  

�
= cA

��D1

�
xR
�
�D0

��� �

2
E
h�
xR � ex�2��� i .

In the following, we show that the analyst would neither choose � = 0 nor � arbitrarily close

to zero if he were able to choose � prior to observing his private signal  . The result that

the analyst prefers a parameter � that is bounded away from zero suggests that ex-ante the

analyst would like to commit to non-zero costs from forecast errors. This provides further

justi�cation for the model�s assumption that the analyst incurs costs from forecast errors.

Claim 8 argmax
�

E
h
uA
�
xR
�e � ; e ;��i > 0.

The proof of the Claim is based on the following argument. First, note that if � = 0,

biasing his forecast is costless to the analyst resulting in a bubbling equilibrium in which

the analyst does not generate any trade. Therefore, the analyst�s expected utility for � = 0

is zero. For any � > 0, there exists a fully separating equilibrium in which the investor

can perfectly infer the analyst�s private information. As a result, the investor�s trading

behavior and the analyst�s expected trading commissions do not depend on � as long as

� > 0. Therefore, which � is preferred by the analyst depends only on the expected cost

from forecast errors. One might expect that the analyst would always prefer a lower value

of �. However, this is not the case. The reason is that the magnitude of the analyst�s

bias converges to 1 as � converges to zero in a way that the analyst�s expected cost from

forecast errors are strictly positive, i.e. lim�#0E

�
�
2

�
xR
�e �� ex�2� > 0. Next, we show

that lim�#0
@E
h
�
2 (xR(e )�ex)2i

@�
= �1 and lim�"1E

�
�
2

�
xR
�e �� ex�2� = 1. These results
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together suggest that the analyst�s preferred value of � is strictly greater than zero and �nite.

The following plot presents the analyst�s expected cost from forecast error as a function of

�. The parameters used to generate the plot are: cA = � = �x = � " = S = 1; cI = 0 and

�x = 2:

Formal proofs are available upon request.
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