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Abstract: This paper focuses on welfare properties of competitive equilibria of exchange

economies with time-dependent preferences. We introduce a notion of recursive efficiency,

and show that competitive equilibria are efficient in the sense defined. Moreover, we present

a social welfare function with maximisers coinciding with recursively efficient allocations. We

also show that every competitive equilibrium can be represented by a solution to a social

welfare optimisation problem. Finally, we discuss the relevance of our results to allocations

arising in sequential equilibria.
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1. INTRODUCTION

Consider an exchange economy consisting of consumers endowed with time-dependent

preferences. Each period, an agent is represented by a different self, whose preferences are

defined over paths of future consumption. Since preferences of subsequent incarnations

may differ across periods and consumers have no access to any commitment technology,

they need to take into account the behaviour of their future selves while determining their

consumption. Assuming that the agents exhibit a sufficient level of sophistication and are

able to correctly predict their future decisions, the demand is equivalent to a Subgame

Perfect Nash Equilibrium (henceforth SPNE) path of a game between different selves of

a consumer. In this paper we discuss welfare properties of equilibrium allocations arising

in the framework.
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We introduce a notion of recursive efficiency, and present conditions under which every

competitive equilibrium allocation is efficient in the defined sense. Moreover, we construct

a social welfare function with maximisers coinciding with recursively efficient allocations.

Eventually, the two results allow us to present a method of representing competitive

equilibria by a solution to a social planner’s optimisation problem.

The literature concerning welfare properties of economies with time-dependent pref-

erences concentrates on conditions and mechanisms which allow to obtain equilibrium

allocations that are efficient with respect to preferences of consumers in the initial period.

We will say that such allocations are Pareto efficient with respect to the initial selves.1

Laibson (1997) has shown that once agents have access to illiquid financial instruments,

they are able to commit future selves to a plan which is optimal with respect to individ-

ual preferences of the initial self. Moreover, once agents can trade the long term assets,

allocations resulting in equilibrium are Pareto efficient with respect to the initial selves.

Interestingly, in some special cases, even when individual agents are unable to commit,

competitive equilibrium allocations can be efficient in the aforementioned sense. This

property was first observed by Barro (1999) for production economies with consumers

endowed with time-separable, logarithmic preferences, and hyperbolic discounting. The

result is surprising, since it implies that even though every individual agent is bounded

by a time-consistency constraint, there exists no other feasible allocation which could

strictly improve upon the equilibrium allocation with respect to the initial agents. Unfor-

tunately, apart from some very specific cases, such equilibria are non-generic. As shown

by Luttmer and Mariotti (2007, Proposition 3), once preferences are not homothetic, the

set of equilibria and the set of allocations which are Pareto efficient with respect to the

initial selves intersect only at isolated points. Their negative result indicates, that this

form of efficiency is rare in the discussed class of models.

In this paper we establish the general welfare properties of competitive economies with

time-dependent preferences, rather than determine conditions under which equilibrium

allocations satisfy a desired notion of optimality. This makes our results closely related

to the ones obtained by Herings and Rohde (2006), who analysed a similar problem.

However, there are several substantial differences between the two papers. First of all,

we concentrate solely on economies with sophisticated agents who can correctly predict

the behaviour of their future selves. Second of all, we do not discuss the existence of

1Herings and Rohde (2006, Definition 10) simply call such allocation Pareto efficient. On the other

hand Luttmer and Mariotti (2007, Definition 1(i)) use the term date-1 Pareto efficient to describe the

same notion of optimality.
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competitive equilibrium. Moreover, we modify the definition of competitive equilibrium

in a relevant way and present our results for a stronger definition of efficiency.

We consider a modified notion of optimality, which we call recursive efficiency. Accord-

ing to our definition, an allocation x is efficient if for any date t there exists no other

feasible allocation which Pareto improves upon x with respect to preferences of all agents

and their future selves following period t. The form of optimality is a stronger concept

than the so called time-consistent overall Pareto efficiency introduced by Herings and

Rohde (2006, Definition 27).2

Overall Pareto efficiency seems to be a natural way of understanding welfare when

preferences are time-variant. According to the criterion, an allocation x is efficient if

there exists no other feasible allocation which Pareto improves upon x with respect to

preferences of all agents and their different selves. The notion implies that an improvement

can be made only if it makes all the consumers and their different selves weakly better

off, and some of them (i.e. at least one self of a consumer) strictly better off. Therefore,

the definition of efficiency is equivalent to the standard Pareto criterion once we consider

each self of every consumer to be a separate agent. As we discuss it in Section 3.1, overall

Pareto efficient allocations exhibit a form of time-inconsistency. This is due to the fact,

that as time progresses and the initial selves are gradually excluded from the economy,

the remaining incarnations might have an incentive to reallocate the consumption in the

following periods, and make themselves better off. Recursive efficiency excludes such cases.

Our notion of optimality is a weaker concept than the so called renegotiation proofness

introduced by Luttmer and Mariotti (2007, Definition 1(ii)). According to their definition,

an allocation x is renegotiation proof if it is recursively efficient according to our sense,

and there exists no other recursively efficient allocation which Pareto dominates x with

respect to preferences of the initial selves. In other words, once we constraint the set

of feasible allocations to the set of recursively efficient consumption paths, renegotiation

proofness coincides with Pareto efficiency with respect to the initial selves. We present a

formal characterisation of the two notions in Definition 5.

Given the definition of efficiency, we show that any competitive equilibrium allocation

is efficient in our sense. Therefore, we present a version of First Fundamental Welfare

Theorem for competitive economies with time-variant preferences. Our result is positive,

as we determine a general class of economies for which competitive equilibria are efficient

in the defined sense.

The result differes from the one obtained by Herings and Rohde (2006, Theorem 30)

2Often the notion is called weak efficiency or multiself Pareto criterion.



P. DZIEWULSKI/OPTIMALITY AND TIME-DEPENDENT PREFERENCES 4

in three aspects. First of all, our theorem concerns a stronger concept of optimality. In

addition, we show that the efficiency of equilibria holds under weaker assumptions imposed

on consumer preferences. Finally and most importantly, we apply a modified definition of

competitive equilibrium.

In the equilibrium specification of Herings and Rohde (2006, Definition 11), agents are

not allowed to transfer their wealth across time, as each period t they are bounded to

consume only these consumption bundles which value does not exceed the value of their

initial endowment of period t goods. This restricts consumers’ possibility to save or borrow.

Therefore, the assumption rules out an important channel of strategic interaction between

different selves of an agent, which we consider to be the key feature of the discussed class

of models. We relax the condition in this work.

Eventually, in the second part of our paper we present conditions under which every

recursively efficient allocation can be represented by a solution to a social welfare max-

imisation problem. We consider this result to be important for two reasons. First of all, it

allows to reduce a rather difficult problem of computing equilibrium allocations to a rel-

atively simple maximisation program. Moreover, it establishes a form of a representative

agent in the discussed class of economies.

The result refers to the characterization of competitive equilibria presented by Negishi

(1960), who has shown that every competitive equilibrium can be represented as a solu-

tion to a weighted social welfare maximisation problem. We extend this idea to exchange

economies with time-dependent preferences, and introduce a notion of recursive social

welfare allocation obtained via a multi-stage optimisation problem. In our specification,

at each stage the social planner maximises a weighted social welfare function of cur-

rent selves, subject to him choosing amongst allocations that solve an analogous social

welfare problem in all the subsequent periods. Therefore, the construction of recursive

social welfare corresponds to the behaviour of every individual consumer, as it imposes

a form of time-consistency on socially optimal allocations. The approach presented by

Negishi have found a wide application to welfare economics, general equilibrium, as well

as macroeconomics. For this reason, we believe that extending the idea to economies with

time-dependent preferences will be useful for more applied studies of the discussed class

of economies.

In Section 2 we introduce our framework and the necessary notation. Then, in Section

3 we characterise the notion of recursive efficiency and present our main result concerning

efficiency of competitive equilibria. Section 4 concerns representation of recursively effi-

cient allocations by a solution to a recursive social welfare optimisation problem. Finally
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in Section 5 we discuss several issues related to different notions of equilibrium, and how

they affect results presented in the paper. Proofs as well as auxiliary results which are

not included in the main body of the paper are presented in the Appendix.

2. ECONOMY WITH TIME-DEPENDENT PREFERENCES

Consider a multiple-period exchange economy with a finite set of consumers I. With a

slight abuse of notation, I shall also denote the cardinality of the set. By T we denote a

finite set of time indices. Dates are labelled in a decreasing manner, i.e. t = 0 denotes the

final period in the economy, t = 1 the second to last, and so on. With a slight abuse of

notation we label the initial date by T . Therefore, T := {T, T − 1, . . . , 1, 0}.
Let Xt = Rnt

+ be a positive orthant of a nt dimensional Euclidean space, t ∈ T . We shall

refer to Xt as to the period t commodity space. Hence, nt is the number of goods/markets

available in the economy at date t. Denote elements of Xt by xit, i ∈ I. That is, xit is a

consumption bundle of period t goods of consumer i.

Due to the dynamic nature of our framework, apart from consumption bundles in sepa-

rate periods, it is useful to consider their paths. Let X̂t := ×ts=0Xs be a set of consumption

paths from date t to the final period 0. Therefore, an element x̂it ∈ X̂t is a path/sequence

of bundles x̂it = (xis)
t
s=0, where for all s, xis ∈ Xs. We shall refer to x̂it ∈ X̂t as to a

consumption path of consumer i following period t. In particular, x̂iT is a complete con-

sumption path of consumer i from the initial date T till the final period 0. Moreover, by

definition x̂it = (xt, x̂
i
t−1) = (xit, x

i
t−1 . . . , x̂

i
t′), for any t′ ≤ t.

Apart from consumption bundles and their paths, we shall often refer to the notion of

an allocation. A period t allocation is a vector xt ∈ XI
t , where xt := (xit)i∈I . In addition,

an allocation path following date t will be denoted by x̂t ∈ X̂I
t , x̂t := (x̂it)i∈I . Similarly, x̂T

is a complete allocation path. Moreover, as previously x̂t = (xt, x̂t−1) = (xt, xt−1 . . . , x̂t′),

for any t′ ≤ t.

As in Strotz (1955), we characterise agents by a sequence of preference relations {�it}t∈T .

We shall refer to �it defined over X̂t, as to a preference relation of period t self of agent

i.3 For any t′ < t we allow for preference relations �it′ and �it to differ over X̂t′ . That is,

we admit the case in which for some x̂it ∈ X̂t and x̂′it′ ∈ X̂t′ , we have x̂′it′ �it′ x̂it′ and x̂it �it
(xit, x

i
t−1, . . . , x̂

′i
t′) at the same time, which would suggest a preference reversal. In fact, the

change of preferences in between the two periods is the source of time-inconsistency in our

analysis. Moreover, we assume that preferences of period t selves are not directly affected,

nor depend on consumption in the preceding periods.4 We denote anti-symmetric, and

3Formally, we say that �i
t⊂ X̂t × X̂t.

4Nevertheless, as in the original formulation of the problem (see Strotz, 1955), period t self of agent i
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symmetric elements of �it in the standard fashion by �it and ∼it, t ∈ T .

In order to make our presentation more transparent, we apply our framework to time-

separable preferences with quasi-hyperbolic discounting.

Example 1 (Quasi-hyperbolic discounting) Let correspondence vi : Rn
+ → R denote

an instantaneous utility function of agent i ∈ I, while δi, γi ∈ [0, 1) his long-term and

present-bias discount factor respectively. Let Xt := Rn
+ for all t ∈ T . Hence, X̂t = Rn(t+1)

+ .

Utility of period t self of consumer i is evaluated by function uit : X̂t → R:

uit(x̂
i
t) := vi(xit) + γi

t−1∑
s=0

δt−si vi(xis).

Therefore, whenever we define preferences {�it}t∈T such that for all t ∈ T and any two

x̂′it , x̂it ∈ X̂t we have

x̂′it �it x̂it ⇔ uit(x̂
′i
t ) ≥ uit(x̂

i
t),

time-separable preferences with quasi-hyperbolic discounting are embedded in our frame-

work.

In the initial period each consumer has an endowment (eit)t∈T ∈ ×t∈TXt, where eit

denotes rights to consumption in period t of consumer i. We find it useful to define paths

of endowments following date t by êit := (eis)
t
s=0 ∈ X̂t. In particular, êiT is equivalent to

the initial endowment of agent i.

In the remainder of the section we introduce the notion of a competitive equilibrium.

To make our presentation more comprehensible, we first discuss in detail a two-period

case. Then, we extend the framework to an arbitrary number of periods.

2.1. Equilibrium in a two-period economy

Consider a case where T = {1, 0}. Then, each consumer is characterized by a pair of

preference relations {�i1,�i0}, where �i1 is defined over X̂1 := X1 ×X0, and �i0 over X0.

Moreover, in the initial period consumer i has a path of endowments following date 1

denoted by êi1 := (ei1, e
i
0) ∈ X̂1.

We consider the following structure of trade in the economy. At the initial date t = 1

agents may trade their initial endowments for the current consumption bundles xi1 ∈ X1,

is affected by the previous consumption in an indirect way, via the budget constraint. This condition is

equivalent to strong independence of past consumption introduced by Herings and Rohde (2006, Definition

24).
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as well as rights to consumption in the final period t = 0, denoted by yi0 ∈ X0. Since agents

are are endowed with time-dependent preferences without the commitment technology,

the vector of rights to consumption yi0 acquired at date 1 may be different from the actual

consumption xi0 taking place in period 0.

Let p1 ∈ Rn1
++ and p0 ∈ Rn0

++ denote prices of date 1 and date 0 consumption goods/rights

respectively. Again, we shall consider paths of prices p̂1 = (p1, p0) ∈ Rn1+n0
++ .

Given p̂1, the total wealth of consumer i is equal to the value of his initial endowment

p̂1 · êi1. Hence, the budget set of agent i is determined by values of correspondence B1 :

Rn1+n0
++ × X̂1 ⇒ X̂1,

(2.1) B1(p̂1, ê
i
1) :=

{
(xi1, y

i
0) ∈ X̂1

∣∣ p1 · xi1 + p0 · yi0 ≤ p̂1 · êi1
}
.

Next, consider the budget set of agent i at date 0. At the beginning of the period, the

agent inherits the rights to consumption yi0 acquired at t = 1. Since xi1 has already been

consumed, it is no longer taken into account. Therefore, the disposable wealth of period

0 self is equal to the value of the inherited rights to consumption p0 · yi0, and so date 0

budget set is defined by values of correspondence B0 : Rn0
++ ×X0 ⇒ X0,

(2.2) B0(p0, y
i
0) :=

{
xi0 ∈ X0 | p0 · xi0 ≤ p0 · yi0

}
.

In the paper we analyse economies where sophisticated agents are endowed with time-

dependent preferences and no commitment technology. This implies, that while determin-

ing their consumption paths consumers can correctly predict preferences and choices of

their future selves, but cannot commit to any consumption plan. This implies, that date

1 selves determine their choices of (xi1, y
i
0) conditional on what will be chosen by their

period 0 selves given yi0.

In order to formally define the demand, we first need to establish how the choice is

made in the final period. Take a vector yi0 ∈ X0 of period 0 consumption rights and date 0

prices p0. The set of choices of period 0 self is equivalent to the set of the greatest elements

of B0(p0, y
i
0) with respect to �i0.5 Hence, it is governed by values of correspondence V i

0 :

Rn0
++ ×X0 ⇒ X0,

(2.3) V i
0 (p0, y

i
0) :=

{
xi0 ∈ X0 | xi0 is a �i0-g.e. of B0(p0, y

i
0)
}
.

The sophistication of date 1 selves implies, that while acquiring (xi1, y
i
0) in the initial

period, agents take into account that the actual consumption taking place at date 0 must

5For some binary relation �, we consider x′ to be a greatest element of set X with respect to �, or a

�-g.e. of X, if x′ ∈ X and ∀x ∈ X,x′ � x.
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belong to V i
0 (p0, y

i
0). This is to say, that since period 0 self is not committed to any plan,

he will choose the most preferable bundle from his budget set given the inherited vector

of consumption rights. Therefore, the problem of the consumer in the initial period is to

maximise preferences over the set of affordable, time-consistent consumption paths, i.e.

vectors (xi1, x
i
0) ∈ B1(p̂1, ê

i
1), where xi0 ∈ V i

0 (p0, x
i
0). The set of all such consumption paths

is determined by values of correspondence F i
1 : Rn1+n0

++ × X̂1 ⇒ X̂1,

(2.4) F i
1(p̂1, ê

i
1) :=

{
(xi1, x

i
0) ∈ B1(p̂1, ê

i
1)
∣∣ xi0 ∈ V i

0 (p0, x
i
0)
}
,

Elements of F i
1(p̂1, ê

i
1) are time-consistent in the sense, that once period 1 self acquires

yi0 = xi0 rights to period 0 consumption, in the following period the date 0 self has

no incentive to re-trade the inherited consumption rights. Hence, the consumption plan

determined in period 1 will actually be implemented at the final date. This allows to

define correspondence V i
1 : Rn1+n0

++ × X̂1 ⇒ X̂1,

(2.5) V i
1 (p̂1, ê

i
1) :=

{
(xi1, x

i
0) ∈ X̂1

∣∣ (xi1, x
i
0) is a �i1-g.e. of F i

1(p̂1, ê
i
1)
}
,

which values determine the set of optimal, time-consistent choices of agent i.

By construction set V i
1 (p̂1, ê

i
1) consists of consumption paths which emerge in a SPNE

path of an intrapersonal game between different selves of agent i. Moreover, since the

initial self is allowed to choose from the set of time consistent paths these elements x̂i1

which maximise his current preferences, we assume that any ties that may arise in the

choice of period 0 self are broken by the initial consumer.6

We proceed with a two-period definition of competitive equilibrium.

Definition 1 (Competitive equilibrium) Given endowment distribution (êi1)i∈I , a com-

petitive equilibrium of an economy starting at date 1 is a pair of allocation and price

paths {x̂∗1, p̂∗1} such that

(i) given p̂∗1, consumers maximise their preferences in a time-consistent manner, i.e.

for all i ∈ I, we have x̂∗i1 ∈ V i
1 (p̂∗1, ê

i
1);

(ii) markets clear, i.e.
∑

i∈I x̂
∗i
1 =

∑
i∈I ê

i
1.

We discuss the relevance of the above definition in Section 2.3. In the following section

we extend the above notion to an arbitrary number of periods.

6This specification is equivalent to the one introduced by Strotz (1955). However, it is a different

formulation from the one investigated by Harris and Laibson (2001), or more recently Balbus, Reffett,

and Woźny (2011) in the infinite dimensional framework.
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2.2. Equilibrium in a multi-period economy

Let T be an arbitrary number in N. Let pt ∈ Rnt
++ denote prices of period t consumption

goods, and Nt :=
∑t

s=0 ns. Similarly to the two-period case, vector p̂t = (ps)
t
s=0 ∈ RNt

++

denotes a path of prices of consumption bundles consumed in periods following date t.

By construction, we have p̂t = (pt, p̂t−1) = (pt, pt−1 . . . , p̂t′) for any t and t′ ≤ t.

We construct the optimisation problem of date t self of agent i as follows. In the final

period 0, given prices p0 as well as a vector of rights to consumption yi0, agent i determines

the�i0-greatest elements ofB0(p0, y
i
0), defined in (2.2). Hence, the set of his optimal choices

is equal to V i
0 (p0, y

i
0), as in (2.3).

In period t = 1, the consumer determines the set of all affordable, time-consistent

consumption paths and chooses the one which maximises his current preferences. The

only difference with respect to the two-period case is that at the beginning of date 1 the

current self is in possession of a path of consumption rights ŷi1 := (yi1, y
i
0) ∈ X̂1 inherited

from the preceding period, rather than êi1. Therefore, the set of affordable, time-consistent

consumption paths is F i
1(p̂1, ŷ

i
1), where correspondence F i

1 is defined as in (2.4). Similarly,

the set of choices is V i
1 (p̂1, ŷ

i
1), where V i

1 is defined as in (2.5).

By backward induction, it is possible to determine the set of all affordable and time-

consistent consumption paths for any t ∈ T . At the beginning of date t, every consumer

is in possession of a vector of rights to consumption ŷit = (yis)
t
s=0 ∈ X̂t. Budget set is then

determined by values of correspondence Bt : RNt
++ × X̂t ⇒ X̂t,

(2.6) Bt(p̂t, ŷ
i
t) :=

{
x̂it ∈ X̂t

∣∣ p̂t · x̂it ≤ p̂t · ŷit
}
.

Hence, the set of affordable and time-consistent consumption paths is determined by

F i
t : RNt

++ × X̂t ⇒ X̂t,
7

(2.7) F i
t (p̂t, ŷ

i
t) :=

{
(xit, x̂

i
t−1) ∈ Bt(p̂t, ŷ

i
t) | x̂it−1 ∈ V i

t−1(p̂t−1, x̂
i
t−1)
}
,

where V i
t−1(p̂t−1, x̂

i
t−1) is the set of optimal, time-consistent choices of the following, date

(t− 1) self. Being consistent with our recursive structure, the set is determined by values

of correspondence V i
t : RNt

++ × X̂t ⇒ X̂t,

(2.8) V i
t (p̂t, ŷ

i
t) :=

{
x̂it ∈ X̂t

∣∣ x̂it is a �it-g.e. of F i
t (p̂t, ŷ

i
t)
}
.

Correspondences F i
t and V i

t are constructed in the following way. Given date t, a path

of prices – p̂t, and a sequence of rights to consumption following date t – ŷit, we determine

7Since we consider date 0 to be the final period, there is no consumption taking place beyond it.

Therefore, every element of the set B0(p0, y
i
0) is trivially time-consistent, and so F i

0(p0, y
i
0) ≡ B0(p0, y

i
0).
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the set of all affordable consumption paths following date t – Bt(p̂t, ŷ
i
t). Every element

x̂it = (xit, x̂
i
t−1) of the set consists of the current consumption bundle xit and a sequence

of consumption rights/bundles following period (t− 1), x̂it−1. In order to make sure that

x̂it ∈ F i
t (p̂t, ŷ

i
t), we need to guarantee that x̂it−1 is a solution to the optimisation problem

of the subsequent incarnation of agent i, given that he inherits x̂it−1. Only then the future

self has no incentive to choose a different consumption path when date (t− 1) arrives. In

other words, as long as x̂it−1 ∈ V i
t−1(p̂t−1, x̂

i
t−1), date (t−1) self cannot strictly benefit from

re-trading x̂it−1. Finally, set V i
t (p̂t, ŷ

i
t) consists of �it-greatest elements of F i

t (p̂t, ŷ
i
t). Hence,

it contains the most preferable, affordable, and time-consistent consumption bundles from

the perspective of period t self.

At this point we define a generalised notion of competitive equilibrium introduced in

Definition 1.

Definition 1’ (Competitive equilibrium) Given endowment distribution (êiT )i∈I , a com-

petitive equilibrium of an economy starting at date T is a pair of allocation and price paths

{x̂∗T , p̂∗T} such that

(i) given p̂∗T , consumers maximise their preferences in a time-consistent manner, i.e.

for all i ∈ I, we have x̂∗iT ∈ V i
T (p̂∗T , ê

i
T );

(ii) markets clear, i.e.
∑

i∈I x̂
∗i
T =

∑
i∈I ê

i
T .

Clearly, in the two-period case Definitions 1 and 1’ are equivalent. The following result

is directly implied by the above definition.

Corollary 1 Let {x̂∗T , p̂∗T} be a competitive equilibrium of an economy starting at date

T . Then, for any t ≤ T , {x̂∗t , p̂∗t} is a competitive equilibrium of an economy starting at

date t, for distribution of endowments (x̂∗it )i∈I .

Proof: Let {x̂∗T , p̂∗T} be a competitive equilibrium. Take any t ≤ T , and adjust Defini-

tion 1’ for T = t, with (x̂∗it )i∈I being the distribution of the initial endowment. Clearly,

condition (ii) of Definition 1’ is satisfied. By construction, ∀i ∈ I, x̂∗iT ∈ V i
T (p̂∗T , ê

i
T ) implies

x̂∗it ∈ V i
t (p̂∗t , x̂

∗i
t ), for any t < T . Hence, condition (i) of Definition 1’ also holds. Q.E.D.

In the next section we discuss several important issues concerning the nature of equilibria

defined above.

2.3. Comments on the notion of competitive equilibrium

The definition of equilibrium introduced in the preceding sections requires some com-

ment. First of all, the notion is very closely related to the standard concept of competitive
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equilibrium. As in the standard definition, trade in our economy takes place only once at

the initial date T . This is implied by the requirement that regardless of the date, prices

of the rights to consumption of period t goods – yit, are equal to the prices of the actual

consumption xit taking place at date t. Therefore, there are no separate spot and futures

markets where agent could exchange either goods or rights to future consumption.

The fact that markets do not reopen in the following periods does not imply that

period T selves can commit their future incarnations to any consumption plan. Note, that

the form of the optimisation problem of period T agents guarantees that all the future

selves would not be willing to re-trade their consumption plans, and therefore captures

the dynamic nature of the analysed problem. Since correspondence F i
T imposes a time-

consistency constraint on choices of period T selves, even though the above definition is

static, equilibrium allocations are time-consistent.

Our notion is closely related to the one introduced by Luttmer and Mariotti (2003,

2006), who characterised the equilibrium for economies with time-separable preferences

and hyperbolic discounting. Similarly to our definition, their economy is static in the

sense that prices of rights to consumption in any period are constant regardless of the

date when they are acquired. It is worth pointing out that the condition is also imposed

by Herings and Rohde (2006) in their characterisation of competitive equilibrium.

What is interesting, is that even though the condition discussed above seems to be

restrictive, it is not. In Section 5 we show that even if we allow for markets to reopen

each period, and prices of rights to future consumption to vary from date to date, it does

not affect our results. In fact, in equilibrium prices of the actual period t consumption

and rights to consumption have to coincide at any date, which makes our requirement

superfluous.

Regarding definition by Herings and Rohde (2006, Definition 11), our notion differs

in one important aspect. Herings and Rohde characterise the optimisation problem of

consumers in a way which does not allow them to spend on the current period consumption

xit more than the value of their initial endowment of period t goods – eit. In other words,

in every period t the budget set of agent i consists of only these consumption paths x̂it for

which pt · xit ≤ pt · eit, for all t ∈ T .

The condition rules out the possibility of transferring wealth across periods strategically,

which we consider to be the essence of the discussed class of models. Note that without

commitment, the only channel that allows a sophisticated agent to influence his future

consumption is through the value of consumption rights ŷit which are inherited by the

subsequent self. Only this way the current self can influence the decision of his future
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incarnations. Hence, by fixing the amount of wealth that an agent can spend each period,

one looses an important feature of economies with time-dependent preferences.

As implied by Definition 1 and 1’, this is not the case in our paper. In the discussed

framework consumers may freely transfer their wealth across periods, as long as their total

expenditure does not exceed the value of the initial endowment. Still, we are able to show

that this does not affect the welfare properties of the discussed class of economies.

3. EFFICIENCY AND COMPETITIVE EQUILIBRIUM

In the following section we discuss welfare properties of competitive equilibria. We define

our notion of efficiency and discuss its relevance with respect to the already existing

concepts of optimality in the related literature. Moreover, we show that any competitive

equilibrium allocation satisfies the efficiency condition.

3.1. Efficient allocations and time-dependent preferences

We say that period t allocation xt ∈ Xt is feasible if and only if
∑

i∈I x
i
t ≤

∑
i∈I e

i
t. An

allocation path x̂t ∈ X̂I
t is feasible if

∑
i∈I x̂

i
t ≤

∑
i∈I ê

i
t, and we shall denote the set of all

such allocation paths by

(3.1) Et :=

{
x̂t ∈ X̂I

t

∣∣∣∣ ∑
i∈I

x̂it ≤
∑
i∈I

êit

}
.

First, we introduce the notion of post-t efficiency, which shall become useful in the

remainder of this section.8

Definition 2 (Post-t efficiency) For some t ∈ T , a path of allocations x̂t ∈ Et is post-t

efficient if there exists no other x̂′t ∈ Et such that ∀i ∈ I and ∀t′ ≤ t, we have x̂′it′ �it′ x̂it′,
and for some i ∈ I and some t′ ≤ t, x̂′it′ �it′ x̂it′.

According to Definition 2, we say that a feasible path of allocations following date t is

post-t efficient if it is Pareto optimal with respect to preferences of all agents and their

different selves following period t. In particular, given our framework, a post-T allocation

is equivalent to the notion of time-consistent overall Pareto efficiency.

Building up on the previous definition, we characterize a notion of efficiency which will

be of the central interest in the remainder of this paper.

Definition 3 (Recursive efficiency) A path of allocations x̂T ∈ ET is recursively effi-

cient, if for any t ∈ T path x̂t is post-t efficient.

8I am grateful to John Quah for inventing the term.
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According to the definition, an allocation path is recursively efficient if it is Pareto

optimal with respect to any subsequence of preference relations {�it′}i∈I,t′≤t following any

period t. Therefore, for x̂T to be recursively efficient we require that allocation x0 is Pareto

optimal with respect to preference relations {�i0}i∈I , x̂1 is Pareto optimal with respect to

{�i1,�i0}i∈I , and so on. In particular we require, that an efficient allocation path is post-T

efficient. Therefore, as mentioned earlier, it is overall Pareto efficient.

The main idea behind the definition of recursive efficiency concerns a form of time-

consistency of optimal allocations. Consider a path x̂T ∈ ET which is post-T efficient, but

not recursively efficient. By Definition 2, this implies that the allocation path is Pareto

optimal with respect to preferences following period T , {�it}(i,t)∈I×T . Hence, there exists

no other feasible sequence of allocations, which makes all the agents and their different

selves weakly better off, and at least some of them (i.e. at least one self of any agent)

strictly better off.

Now, assume that period T has passed, and consumers find themselves in period T − 1.

Since period T selves are no longer present in the economy, the remaining selves following

date T − 1 might be willing to alter the allocation of consumption in the remaining

periods. As period T preferences are no longer taken into consideration, there might exist

a distribution of goods which Pareto improves the previously determined allocation for

the remaining selves. The idea of recursive efficiency is to exclude such cases.

As mentioned above, recursive efficiency is a stronger notion than overall Pareto effi-

ciency. On the other hand, it is a weaker notion that renegotiation proofness. Consider a

two-period case as in Luttmer and Mariotti (2007) (see Definition 5(ii) for an extension of

the definition to multiple periods). Denote the set of period 0 Pareto efficient allocations

by

R0 := {x0 ∈ X0 | ¬∃x0 ∈ E0 that ∀i ∈ I, x′i0 �i0 xi0, and for some i, x′i0 �i0 xi0}.

Given the definition by Luttmer and Mariotti (2007, Definition 1(ii)), an allocation path

x̂1 := (x1, x0) ∈ E1 is renegotiation proof if: (a) x0 ∈ R0, and (b) there exist no other

feasible allocation path x̂′1 := (x′1, x
′
0), with x′0 ∈ R0, such that for all i ∈ I, x̂′i1 �i1 x̂i1

and for some i, x̂′i1 �i1 x̂i1. Therefore, in a two-period economy renegotiation proofness is

a special case of recursive efficiency. Clearly, since for any renegotiation proof allocation

x̂1, x0 belongs to R0, it is post-0 efficient. In addition, there is no other consumption path

x̂′1 := (x′1, x
′
0), with x′0 ∈ R0, which could Pareto improve upon x̂1 with respect to period

1 preferences. Hence, any change in the welfare at the initial date would have to worsen

off at least some agents in the final period. Therefore, it is recursively efficient. On the
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other hand, recursively efficient allocations are in general not renegotiation proof, as they

fail to satisfy condition (b).

3.2. Welfare properties of competitive equilibria

In the remainder of this section we establish a result concerning recursive efficiency

of equilibrium allocations. In order to prove our main theorem we impose the following

assumption on the premises of the model.

Assumption 1 (Preferences) For all (i, t) ∈ I × T , preference relation �it is

(i) reflexive, complete, and transitive;

(ii) locally non-satiated on Xt, i.e. for all x̂it ∈ X̂t and any ε > 0, there exists some

xi′t ∈ Xt such that ‖xit − xi′t ‖Xt < ε and (xi′t , x̂
i
t−1) �it x̂it, where ‖ · ‖Xt is a norm on

Xt.
9

We state our first main result of the paper.

Theorem 1 Under Assumption 1, for any competitive equilibrium {x̂∗T , p̂∗T}, allocation

path x̂∗T is recursively efficient.

The proof of the above theorem is rather extensive, hence we present it in the Appendix.

In order to show the line of our argument we prove a two-period version of Theorem 1

below. Consider the following corollary.

Corollary 2 Let T := {1, 0}. Under Assumption 1, for any competitive equilibrium

{x̂∗1, p̂∗1} allocation path x̂∗1 is recursively efficient.

In order to make our argument transparent, we first present several claims which will

be used in the proof. Throughout the following argument we shall assume that {x̂∗1, p̂∗1} is

a competitive equilibrium satisfying Definition 1.

Claim 1 For all i ∈ I, xi0 �i0 x∗i0 ⇒ p∗0 · xi0 ≥ p∗0 · x∗i0 , and xi0 �i0 x∗i0 ⇒ p∗0 · xi0 > p∗0 · x∗i0 .

Proof: We prove the first part of the claim by contradiction. Assume that xi0 �i0 x∗i0
and p∗0 · xi0 < p∗0 · x∗i0 . By Assumption 1(ii), there exists some x′i0 ∈ B0(p∗0, x

∗i
0 ) such

that x′i0 �i0 xi0 �i0 x∗i0 . This contradicts that x∗i0 is a �i0-greatest element of B0(p∗0, x
∗i
0 ).

Therefore, xi0 �i0 x∗i0 ⇒ p∗0 · xi0 ≥ p∗0 · x∗i0 .

9Observe that local non-satiation of �i
t on Xt is a stronger condition than local non-satiation over the

whole domain X̂t. Clearly the former implies the latter, but the opposite implication does not hold.
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Now assume that xi0 �i0 x∗i0 . By the above argument, this implies that p∗0 ·xi0 ≥ p∗0 ·x∗i0 . If

p∗0 ·xi0 = p∗0 ·x∗i0 , then xi0 ∈ B0(p∗0, x
∗i
0 ), which contradicts that x∗i0 is a �i0-greatest element

of B0(p∗0, x
∗i
0 ). Hence, xi0 �i0 x∗i0 ⇒ p∗0 · xi0 > p∗0 · x∗i0 . Q.E.D.

In the next claim we simply restate the standard First Fundamental Welfare Theorem

(see Mas-Colell, Whinston, and Green, 1995, Proposition 16.C.1).

Claim 2 There exists no allocation x0 ∈ E0 such that for all i ∈ I, xi0 �i0 x∗i0 , and for

some i, xi0 �i0 x∗i0 .

Proof: We prove the result by contradiction. Assume that there exists some x0 ∈ E0

such that ∀i ∈ I, xi0 �i0 x∗i0 , and for some i, xi0 �i0 x∗i0 . By the market clearing condition

p∗0 ·
∑

i∈I x
∗i
0 = p∗0 ·

∑
i∈I e

i
0. By Claim 1, ∀i ∈ I, p∗0 · xi0 ≥ p∗0 · x∗i0 , and for some i,

p∗0 · xi0 > p∗0 · x∗i0 . Hence, p∗0 ·
∑

i∈I x
i
0 > p∗0 ·

∑
i∈I x

∗i
0 = p∗0 ·

∑
i∈I e

i
0. Since x0 ∈ E0, we have

p∗0 ·
∑

i∈I x
i
0 ≤ p∗0 ·

∑
i∈I e

i
0. Contradiction. Q.E.D.

Claim 3 For any allocation x0 ∈ E0 such that for all i ∈ I, xi0 ∼i0 x∗i0 , we have p∗0 · xi0 =

p∗0 · x∗i0 , for all i ∈ I.

Proof: By Claim 2, ∀i ∈ I, p∗0 · xi0 ≥ p∗0 · x∗i0 . Assume that for some i, we have p∗0 · xi0 >
p∗0 · x∗i0 . By the market clearing condition this implies that p∗0 ·

∑
i∈I x

i
0 > p∗0 ·

∑
i∈I x

∗i
0 =

p∗0 ·
∑

i∈I e
i
0. However, we claim that x0 ∈ E0, that is p∗0 ·

∑
i∈I x

i
0 ≤ p∗0 ·

∑
i∈I e

i
0, which

yields contradiction. Q.E.D.

Claim 4 Take any x̂1 := (x1, x0) ∈ E1 such that for all i ∈ I, we have xi0 ∼i0 x∗i0 . Then,

x̂i1 �i1 x̂∗i1 ⇒ p∗1 · xi1 ≥ p∗1 · x∗i1 , and x̂i1 �i1 x̂∗i1 ⇒ p∗1 · xi1 > p∗1 · x∗i1 .

Proof: We prove the first part of the claim by contradiction. Assume that for some i

we have x̂i1 �i1 x̂∗i1 and p∗1 · xi1 < p∗1 · x∗i1 . By Assumption 1(ii), there exists some x′i1 ∈ X1

such that p∗1 · x′i1 ≤ p∗1 · x∗i1 and (x′i1 , x
i
0) �i1 x̂i1. Hence, (x′i1 , x

i
0) �i1 x̂∗i1 .

Since x̂1 ∈ E1, we have x0 ∈ E0. Moreover, ∀i ∈ I, xi0 ∼i0 x∗i0 , which by Claim 3 implies

that ∀i ∈ I, p∗0 · xi0 = p∗0 · x∗i0 . Therefore, B0(p∗0, x
i
0) = B0(p∗0, x

∗i
0 ), and so V i

0 (p∗0, x
i
0) =

V i
0 (p∗0, x

∗i
0 ). Clearly, (x′i1 , x

i
0) ∈ F i

1(p̂∗1, ê
i
1), which contradicts that x̂∗i1 ∈ V i

1 (p̂∗1, ê
i
1).

We proceed with the second part of the claim. By the above argument we know that

for all i we have p∗1 · xi1 ≥ p∗1 · x∗i1 . Assume that p∗1 · xi1 = p∗1 · x∗i1 . Since ∀i ∈ I, xi0 ∼i0 x∗i0 ,

we have ∀i ∈ I, p∗0 · xi0 = p∗0 · x∗i0 (by Claim 3). This implies that B0(p∗0, x
i
0) = B0(p∗0, x

∗i
0 )

and V i
0 (p∗0, x

i
0) = V i

0 (p∗0, x
∗i
0 ). Hence, we have x̂i1 ∈ F i

1(p̂∗1, ê
i
1), which contradicts that

x̂∗i1 ∈ V i
1 (p̂∗1, ê

i
1). Q.E.D.
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Having stated the necessary prerequisites, we may prove Corollary 2.

Proof of Corollary 2: We prove the result by contradiction. Assume that x̂∗1 is not

recursively efficient. Therefore, there exists some feasible allocation path x̂1 such that (i)

∀i ∈ I, x̂i1 �i1 x̂∗i1 , xi0 �i0 x∗i0 , and for some i, x̂i1 �i1 x̂∗i1 or xi0 �i0 x∗i0 ; or (ii) ∀i ∈ I,

xi0 �i0 x∗i0 , and for some i, xi0 �i0 x∗i0 .

By Claim 2, we know that (ii) may never occur. Therefore, for (i) to hold it must be that

∀i ∈ I, xi0 ∼i0 x∗i0 . Moreover, we have ∀i ∈ I, x̂i1 �i1 x̂∗i1 , and for some i, x̂i1 �i1 x̂∗i1 . Claim

4 implies that ∀i ∈ I, p∗1 · xi1 ≥ p∗1 · x∗i1 , and for some i, p∗1 · xi1 > p∗1 · x∗i1 . By the market

clearing condition p∗1 ·
∑

i∈I x
i
1 > p∗1 ·

∑
i∈I x

∗i
1 = p∗1 ·

∑
i∈I e

i
1. However, by assumption

x̂1 ∈ E1, hence p∗1 ·
∑

i∈I x
i
1 ≤ p∗1 ·

∑
i∈I e

i
1. Contradiction. Q.E.D.

Theorem 1 requires some comment. First of all, it implies that there exists no other

feasible allocation which can Pareto improve upon the equilibrium outcome, given that

we consider each self of every consumer as a separate agent. Hence, every competitive

equilibrium is time-consistently overall Pareto efficient. Therefore, the above proposition

establishes a version of the First Fundamental Welfare Theorem for exchange economies

with time-dependent preferences.

However, since the result implies that every equilibrium allocation is recursively effi-

cient, it satisfies a stronger condition. By Theorem 1 and Definition 3, we know that

additionally for any t ∈ T allocation path x̂∗t is post-t efficient. Therefore, competitive

equilibrium allocations do not give much room for improvement when it comes to welfare.

Clearly, equilibrium allocation is usually not Pareto efficient solely with respect to period

T preferences, nor renegotiation proof, as shown by Luttmer and Mariotti (2007, Propo-

sition 3). However, a strict improvement of the welfare of the initial consumers would

worsen off at least some of the incarnations in the subsequent periods.

Theorem 1 differs from the result obtained by Herings and Rohde (2006, Theorem 30)

in three ways. First of all, we show that competitive equilibria in economies with time-

dependent preferences satisfy an optimality condition stronger than time-consistent overall

Pareto efficiency. Equilibrium allocations are not only optimal with respect to preferences

of all agents and their different selves, but also possess the recursive and time-consistent

feature characterised in Definition 3, which preserves the efficiency of allocation paths as

time progresses.

Second of all, our result refers to a modified definition of competitive equilibrium. As

mentioned in Section 2.3, allowing agents to strategically interact with their future selves

via budget constraints is an important component of the consumer choice when tastes
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change over time. Moreover, the behaviour does affect the resulting equilibrium alloca-

tions. Still, as suggested by Theorem 1, it does not change their general welfare properties.

Finally, we obtain our result under weaker conditions imposed on the preferences of con-

sumers. As Herings and Rohde, we consider rational preferences which are independent of

the past consumption.10 However, we do not impose any assumption concerning continu-

ity, monotonicity, nor convexity of the underlying tastes. In fact, our result requires only

local non-satiation of preferences over the current period commodity space. Therefore, the

property we have established in this section is a general feature of the discussed class of

economies. Nevertheless, it is worth pointing out that our theorem is not a generalisation

of the result by Herings and Rohde. Since their definition of equilibrium is substantially

different from ours, the results need not apply to their framework.

In the remainder of the paper we use the implications of Theorem 1 to construct a social

welfare function with maximisers coinciding with competitive equilibrium allocations.

Finally, we discuss the issue of representation of economies in question.

4. REPRESENTATION OF RECURSIVELY EFFICIENT ALLOCATIONS

In the following section we concentrate on representation of recursively efficient allo-

cations by solutions to a social welfare optimisation problem. We impose the following

condition.

Assumption 2 (Utility representation) For all (i, t) ∈ I × T , preference relation �it is

represented by a utility function uit : X̂t → R. That is, for any two x̂it, x̂
′i
t ∈ X̂t, we have

x̂i′t �it x̂it ⇔ uit(x̂
i′
t ) ≥ uit(x̂

i
t).11

In the remainder of the section we characterize a notion of social welfare. Then, we

discuss when the concept coincides with recursive efficiency presented in the preceding

section.

4.1. Social welfare function when preferences are time-dependent

We construct our notion of social welfare function using backward induction. First,

consider the social planner’s problem in the final period t = 0. For any real, positive,

non-zero weights α0 := (αi0)i∈I ∈ RI
+, define set

(4.1) Ψ0(α0) := argmax
x0∈E0

∑
i∈I

αi0u
i
0(xi0).

10That is, they satisfy strong independence of past consumption. See Definition 6’ in their paper.
11Sufficient conditions for utility representation of preferences are well-known (e.g. see Mas-Colell,

Whinston, and Green, 1995, Chapter 3.C).
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In other words, Ψ0(α0) contains all feasible period 0 consumption bundles which maximise

the weighted social welfare function for a fixed vector of weights α0 := (αi0)i∈I . Since

the form of the above functional is rather standard, we refrain ourselves from further

discussion.

Next, consider the problem in period t = 1. Denote a path of real, positive, non-zero

weights following period 1 by α̂1 := (α1, α0), where αt = (αit)i∈I ∈ RI
+, t ∈ {1, 0}. Define

set Ψ1(α̂1) as

(4.2) Ψ1(α̂1) := argmax
x̂1∈Γ1(α0)

∑
i∈I

αi1u
i
1(x̂1),

where

Γ1(α0) := {(x1, x0) ∈ E1 | x0 ∈ Ψ0(α0)} ,

and Ψ0(α0) is defined as in (4.1). Therefore, set Ψ1(α̂1) contains all allocation paths

following date 1 which maximise period 1 social welfare functional for weights α1, given

that period 0 allocation x0 is a solution to the social planer’s optimisation problem in

the final period, given weights α0. In other words, set Ψ1(α̂1) contains time-consistent,

welfare maximising allocations, in an environment where the social planner faces a similar

time-inconsistency problem as individual consumers.

This allows us to define a simplified notion of a social welfare for a two-period case.

Definition 4 (Recursive social welfare) For T = {1, 0}, an allocation path x̂◦1 ∈ X̂I
1

is a recursive social welfare allocation if there exists a path of real, non-zero weights

α̂1 := (α1, α0), where αt ∈ RI
+, t ∈ T , such that x̂◦1 ∈ Ψ1(α̂1).

Using backward induction, one can determine corresponding sets Ψt(α̂t) and Γt(α̂t−1)

for any t ∈ T , and any non-zero path of weights α̂t := (αs)
t
s=0, αs ∈ RI

+. Define

(4.3) Ψt(α̂t) := argmax
x̂t∈Γt(α̂t−1)

∑
i∈I

αitu
i
t(x̂

i
t),

where

Γt(α̂t−1) := {(xt, x̂t−1) ∈ Et | x̂t−1 ∈ Ψt−1(α̂t−1)},

where Ψt−1(α̂t−1) is defined as in (4.3) for the corresponding subsequence of weights α̂t−1.

The construction of Ψt and Γt is similar to the construction of correspondences V i
t and

F i
t for optimisation problems of individual agents in Section 2.2. Namely, for any t take

the set of feasible allocations paths following date t, Et. Let x̂t ∈ Et. By definition, we
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have x̂t = (xt, x̂t−1), where xt is an allocation of period t consumption goods, and x̂t−1

is a path of allocations following period (t − 1). In order to make sure that x̂t ∈ Γt(α̂t),

we need to guarantee that the subsequence x̂it−1 is a solution to the corresponding social

welfare optimisation problem in the following period, given the path of weights α̂t−1. This

way, we obtain a form of time-consistency of socially optimal allocations. That is, given

that the next period social planner is guided by a different social welfare function, he

is not willing to change the allocation determined in the preceding period, as it could

not strictly improve the welfare given his criterion. Finally, the social planner in period

t chooses an element from the set of feasible, time-consistent sequences of allocations,

which maximise his current welfare function.

We state the general definition or recursive efficiency.

Definition 4’ (Recursive efficiency) An allocations path x̂◦T ∈ X̂I
T is a recursive social

welfare allocation if there exists a path of real, positive, non-zero weights α̂T := (αt)t∈T ,

where αt ∈ RI
+, such that x̂◦T ∈ ΨT (α̂T ).

Clearly, Definition 4 is equivalent to 4’ once T = {1, 0}. We can establish sufficient

conditions under which for any path of weights there exists a recursive social welfare

allocation.

Proposition 1 Let Assumption 2 be satisfied and for all (i, t) ∈ I × T , uit be upper

semi-continuous. Then, for any path of real, positive, non-zero weights α̂T := (αt)t∈T ,

where αt ∈ RI
+, t ∈ T , there exists a recursive social welfare allocation.

Proof: Take any sequence of real, positive, non-zero weights α̂T . We prove the result

by induction. Take t = 0. Clearly, E0 is non-empty and compact. Moreover, by upper

semi-continuity of ui0,
∑

i∈I α
i
0u

i
0 is upper semi-continuous. Hence, due to Aliprantis and

Border (2006, Theorem 2.43) Ψ0(α0) is non-empty and compact.

Next, take any t ∈ T and the corresponding subsequence of weights α̂t. Assume that set

Ψt(α̂t) is non-empty and compact. Clearly, Γt+1(α̂t) is also non-empty and compact. By

upper semi-continuity of uit+1,
∑

i∈I α
i
t+1u

i
t+1 is upper semi-continuous. Therefore, due to

Aliprantis and Border (2006, Theorem 2.43) Ψt+1(α̂t+1) is non-empty and compact. The

proof is complete. Q.E.D.

A recursive social welfare allocation is a solution to a multi-stage maximisation problem,

where at each stage t the social planner maximises the current period weighted social

welfare function, given that the path of allocations following date t is a solution to an

analogue problem in each of the following periods. Therefore, recursive social welfare is
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closely related to recursive efficiency, as it focuses on a form of time-consistency of optimal

allocations. In fact, in the next section we present conditions under which the two notions

coincide.

4.2. Recursive efficiency and social welfare equivalence

First, we show conditions under which every recursive social welfare allocation is recur-

sively efficient.

Proposition 2 If x̂◦T is a recursive social welfare allocation for some strictly positive

path of weights α̂T := (αt)t∈T , αt ∈ RI
++, then it is recursively efficient.

Proof: Let x̂◦T be a recursive social welfare allocation for some real, strictly positive

path of weights α̂T . We prove the result by induction. First, we show that x◦0 is post-

0 efficient. Assume the opposite. Then, there exists some x0 ∈ E0 such that ∀i ∈ I,

ui0(xi0) ≥ ui0(x◦i0 ), and for some i, ui0(xi0) > ui0(x◦i0 ). Since weights α0 are strictly positive,

this implies
∑

i∈I α
i
0u

i
0(xi0) >

∑
i∈I α

i
0u

i
0(x◦i0 ), which contradicts that x◦0 ∈ Ψ0(α0) and

α̂T ∈ ΨT (α̂T ).

Next, take any t ∈ T and assume that ∀t′ ≤ t, x̂◦t′ is post-t′ efficient. We claim that x̂◦t+1

is post-(t + 1) efficient. Assume the opposite. Therefore, there exists some x̂t+1 ∈ Et+1

such that ∀i ∈ I and ∀t′ ≤ (t + 1), we have uit′(x̂
i
t′) ≥ uit′(x̂

◦i
t′ ), and for some i and some

t′ ≤ (t + 1), uit′(x̂
i
t′) > uit′(x̂

◦i
t′ ). By assumption ∀t′ ≤ t, x̂◦t′ is post-t′ efficient, so it must

be that ∀i ∈ I, and ∀t′ ≤ t, uit′(x̂
i
t′) = uit′(x̂

◦i
t′ ). This implies that x̂t ∈ Ψt(α̂t), and so

x̂t+1 ∈ Γt+1(α̂t). Moreover, since the weights are strictly positive,
∑

i∈I α
i
t+1u

i
t+1(x̂it+1) >∑

i∈I α
i
t+1u

i
t+1(x̂◦it+1), which contradicts that x̂◦t+1 ∈ Ψt+1(α̂t+1) and x̂◦T ∈ ΨT (α̂T ). Q.E.D.

Proposition 2 implies, that in general a set of recursively efficient allocations can be

determined via a solution to the recursive social welfare maximisation problem, as long as

weights corresponding to each self of every consumer are strictly positive. For the converse

result to be true, we need to impose some convexity assumptions on preferences.

Assumption 3 (Concave utility) For all i ∈ I, t ∈ {T − 1, . . . , 0}, and x̂it−1 ∈ X̂t−1,

function uit(x
i
t, x̂

i
t−1) is strictly concave with respect to xit. Moreover, for all i ∈ I and

x̂iT−1 ∈ X̂ i
t−1, uiT (xiT , x̂

i
T−1) is (weakly) concave with respect to xiT .

Several times we shall refer to a slightly stronger version of the above assumption.

Assumption 3’ (Strictly concave utility) For all (i, t) ∈ I×T and x̂it−1 ∈ X̂t−1, function

uit(x
i
t, x̂

i
t−1) is strictly concave with respect to xit.
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We state the second main result of the paper.

Theorem 2 Let Assumptions 2, 3 be satisfied and x̂T be a recursively efficient allocation.

There exist some real, positive, non-zero weights α̂T := (αt)t∈T , where αt ∈ RI
+, such that

x̂T ∈ ΨT (α̂T ). If additionally Assumption 3’ is satisfied, then {x̂T} = ΨT (α̂T ).

The proof of the theorem is presented in the Appendix. However, in order to show the

intuition behind our main result, we provide the proof for the two-period case. Consider

the following corollary

Corollary 3 Assume T = {1, 0}. Let Assumptions 2, 3 be satisfied and x̂1 be a recur-

sively efficient allocation. There exist some real, positive, non-zero weights α̂1 := (α1, α0),

where αt ∈ RI
+, t ∈ T , such that x̂1 ∈ Ψ1(α̂1). If additionally Assumption 3’ is satisfied,

then {x̂1} = Ψ1(α̂1).

Proof: Assume that x̂1 = (x1, x0) is a recursively efficient allocation. Let u0 : XI
0 → RI ,

be defined as u0 := (ui0)i∈I , and U ′0 := u0(E0). Since ∀i ∈ I, ui0 is convex, it is also

continuous (see Rockafellar, 1970, Theorem 10.1). Therefore, by compactness of E0, U ′0 is

compact. Let U0 := {u ∈ RI | ∀x′0 ∈ E0, ∀i ∈ I, ui ≤ ui0(x′i0 )}. By Assumption 3, U0 is

convex. Moreover, by construction U0 = U ′0−RI
+. Hence, U0 is closed and bounded above.

Denote u∗0 = u(x0). By definition of x̂1, there exists no other x′0 ∈ E0 such that ∀i ∈ I,

ui0(x′i0 ) ≥ ui0(xi0), and ui0(x′i0 ) > ui(xi0) for some i. Hence, it must be that u∗0 ∈ ∂U0. By

the separating hyperplane theorem (see, e.g. Aliprantis and Border, 2006, Theorem 7.30),

there exists some non-zero vector α0 ∈ RI such that ∀u ∈ U0, α0 · u∗0 ≥ α0 · u. Since

U0 − RI
+ ⊂ U0, it must be that α0 ∈ RI

+. By construction, this implies that x0 ∈ Ψ0(α0).

Strict concavity of ui0 implies that {x0} = Ψ0(α0). Hence, it is compact and convex.

Therefore, Γ1(α0) is also compact and convex. Define u : XI
1 ×XI

0 → RI as u1 := (ui1)i∈I ,

and U ′1 := u1(Γ1(α0)). By continuity of ui1 (implied by Rockafellar, 1970, Theorem 10.1),

U ′1 is compact. Let U1 := {u ∈ RI | ∀x̂′ ∈ Γ1(α0), ∀i ∈ I, ui ≤ ui1(x̂′i)}, which by

concavity of ui1 is convex. Moreover, by construction U1 := U ′1 − RI
+, which is closed and

bounded above.

To complete the proof, denote u∗1 = u1(x̂1). By definition of x̂1, there exists no other

x′1 ∈ XI
1 such that ∀i ∈ I, ui1(x′i1 , x

i
0) ≥ ui1(x̂i), and ui1(x′i1 , x

i
2) > ui1(x̂i) for some i.

Therefore, it must be that u∗1 ∈ ∂U1. By the separating hyperplane theorem (Aliprantis

and Border, 2006, Theorem 7.30), there exists a non-zero vector α1 ∈ RI such that

∀u ∈ U1, α1 · u∗1 ≥ α1 · u. Since U1 − RI
+ ⊂ U1, it must be that α1 ∈ RI

+. Denote

α̂1 = (α1, α0). By construction, x̂1 ∈ Ψ1(α̂1).
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To prove the second part of the proposition, recall that Γ1(α0) convex. Therefore, by

strict concavity of ui1, we have {x̂1} = Ψ1(α̂1), which completes the proof. Q.E.D.

Under some additional assumptions, it is possible to show that weights supporting a

recursively efficient allocation are strictly positive.

Proposition 3 Let Assumptions 2 and 3 be satisfied. In addition, let for all (i, t) ∈
I × T and x̂it−1 ∈ X̂t, u

i
t(x

i
t, x̂

i
t−1) be strictly increasing with respect to xit. Then, for any

recursively efficient allocation x̂T such that for all (i, t) ∈ I×T , xit is non-zero, there exist

some real, strictly positive weights α̂t := (αs)t∈T , where αt ∈ RI
++, such that x̂T ∈ ΨT (α̂T ).

If additionally Assumption 3’ is satisfied, then {x̂T} = ΨT (α̂T ).

Proof: Let x̂T be a recursively efficient path of allocations such that ∀(i, t) ∈ I ×T , xit

is non-zero. By Theorem 2, there exist some real, positive, non-zero path of weights α̂T ,

for which x̂T ∈ ΨT (α̂T ).

Take any t ∈ T . Assume that for some j ∈ I, αjt = 0. Let x′t = (x′it )i∈I , where ∀i 6= j,

x′it = xit + 1/(I − 1)xjt , and x′jt = 0. Clearly, (x′t, x̂t−1) ∈ Γt(α̂t−1). Since ∀x̂it−1 ∈ X̂t−1,

uit(x
i
t, x̂

i
t−1) is strictly increasing in xit, we have

∑
i∈I α

i
tu
i
t(x
′i
t , x̂

i
t−1) >

∑
i∈I α

i
tu
i
t(x̂

i
t). This

contradicts that x̂t ∈ Ψt(α̂t) and x̂T ∈ ΨT (α̂T ). Q.E.D.

The results above require some comment. Proposition 2 implies that it is possible to

determine a wide class of recursively efficient allocations by solving a social welfare opti-

misation problem. On the other hand, Theorem 2 provides conditions under which every

recursively efficient allocation can be represented by a solution to the same optimisation

problem.

The proof of Theorem 2 relies strongly on strict concavity of preferences following

the initial period. Once we weaken the condition to weak concavity, there might exist a

recursively efficient allocation which cannot be represented via a recursive social welfare

function. For example, take T = {1, 0} and assume that there exists some positive weights

α0 such that x0 ∈ Ψ0(α0). Once ui0 is (weakly) concave, set Ψ0(α0) is convex and contains

set {x0 ∈ E0 | ∀i ∈ I, ui0(x′i0 ) = ui0(xi0)}, i.e. the set of period 0 allocations which are

Pareto equivalent to x0. However, in general the two sets are not equal. This implies, that

there might exist some elements of set Γ0(α0) which are not Pareto ordered relatively

to x̂1 with respect to preferences (ui0)i∈I , but are Pareto dominant with respect to date

1 preferences. In such cases, x̂1 would never be a solution to recursive social welfare

maximisation problem, like in the following example.
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Example 2 Consider a pure exchange economy with two consumers and two goods

j = 1, 2. Hence, I = {1, 2} and T = {1, 0}. Let X0 = R2
+, with its elements denoted by

xi0 = (xi10 , x
i2
0 ). Let ∀i ∈ I, period 0 preferences be defined by ui0 : X0 → R,

ui0(xi0) := xi10 + xi20 .

On the other hand, let period 1 preferences be defined by ui1 : X0 → R,

ui1(xi0) :=
√
xi10 + γi

√
xi20 ,

where γ1 = 1, γ2 = 3. Hence, we assume that period 1 preferences are defined solely over

period 0 consumption bundles. Eventually, let the total endowment in the economy be∑
i∈I e

i
0 = (1, 1).

Observe, that allocation x0 = (x1
0, x

2
0) = ((x11

0 , x
12
0 ), (x21

0 , x
22
0 )) = ((0.8, 0.2), (0.2, 0.8)) is

recursively efficient. However, there exist no weights α̂1 := (α1, α0) such that the allocation

is a solution to a recursive social welfare optimisation problem.

Clearly, x0 ∈ Γ1(α0) only for these weights α0 = (α1
0, α

2
0) for which α1

0 = α2
0. However,

then Γ1(α0) = {x′0 ∈ R4
+ |

∑
i∈I x

′ij
0 = 1, ∀j = 1, 2}, while the set of Pareto equivalent

allocations to x0 with respect to period 0 preferences is Λ(α0) := {x′0 ∈ R4
+ |

∑
i∈I x

′ij
0 =

1, and
∑

j=1,2 x
′ij
0 = 1, ∀i ∈ I, ∀j = 1, 2}. Therefore, Λ(α0) ⊂ Γ1(α0) (strictly).

Assume that there exist some period 1 weights α1 = (α1
1, α

2
1) such that x0 is a recursive

social welfare allocation. Given the weights, the allocation has to satisfy the following first

order conditions:

α1
1

α2
1

=

(
x11

0

x21
0

) 1
2

, and
α1

1

α2
1

= 3

(
x12

0

x22
0

) 1
2

.

However, since (x11
0 /x

21
0 )

1
2 = 2 and 3 (x12

0 /x
22
0 )

1
2 = 3/2, there exists no α1, for which the

above conditions are met.

Once we restrict our attention to strictly concave utility functions, set Ψ0(α0) is a

singleton and the case discussed above does not occur.

4.3. Competitive equilibrium and social welfare

Theorems 1 and 2 allow to characterize competitive equilibria via recursive social wel-

fare function. Therefore, it is possible to define an optimisation problem with maximisers

coinciding with any competitive equilibrium allocation. Consider the following proposi-

tion.
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Proposition 4 Let Assumptions 1, 2, and 3 be satisfied. For any competitive equi-

librium {x̂∗T , p̂∗T} there exist some real, positive, non-zero weights α̂T := (αt)t∈T , where

αt ∈ RI
+, such that x̂∗T ∈ ΨT (α̂T ). In addition, if Assumption 3’ is satisfied, then {x̂∗T} =

ΨT (α̂T ).

Proof: Theorem 1 implies, that for any competitive equilibrium {x̂∗T , p̂∗T}, allocation

path x̂∗T is recursively efficient. By Theorem 2, every recursively efficient allocation can

be represented by a recursive social welfare allocation for some real, positive, non-zero

weights α̂T . In particular, this is true for x̂∗T . Moreover, once Assumption 3’ holds, we

have {x̂∗T} = ΨT (α̂T ). Q.E.D.

The following corollary is implied by Proposition 3.

Corollary 4 Let Assumptions 1, 2, and 3 be satisfied. In addition, let for all (i, t) ∈
I × T and x̂it−1 ∈ X̂t−1, uit(x

i
t, x̂

i
t−1) be strictly increasing with respect to xit. Then, for

any competitive equilibrium {x̂∗T , p̂∗T} such that for any (i, t) ∈ I × T , x∗it is non-zero,

there exist some real, strictly positive weights α̂T := (αt)t∈T , where αt ∈ RI
++, such that

x̂∗T ∈ ΨT (α̂T ). In addition, if Assumption 3’ is satisfied, then {x̂∗T} = ΨT (α̂T ).

Proof: Let {x̂∗T , p̂∗T} be a competitive equilibrium such that ∀(i, t) ∈ I × T , x∗it is non-

zero. Proposition 4 implies there exist some real, positive, non-zero weights α̂T such that

x̂∗T ∈ ΨT (α̂T ). Since ∀(i, t) ∈ I × T and ∀x̂it−1 ∈ X̂t−1, uit(x
i
t, x̂

i
t−1) is strictly increasing

with respect to xit, by Corollary 3 we conclude that path of weights α̂t is strictly positive.

Finally, under Assumption 3’ holds, we have {x̂∗T} = ΨT (α̂T ). Q.E.D.

The above results state, that every allocation arising in a competitive equilibrium can

be represented by a solution to a recursive social welfare optimisation problem, given

the proper path of weights α̂T . Therefore, instead of solving a competitive equilibrium

problem, it is sufficient to determine an allocation maximising recursive social welfare

function. In fact, in various applications finding a fixed point of some operator in order

to determine equilibrium prices and allocations is much more difficult, if not impossible,

than characterizing a solution to some optimisation problem (see Kehoe, 1991, for further

discussion).

What is more, the corollary implies that there exists a method of aggregating preferences

of agents with time-variant tastes and representing them by a single agent in the same

class of preferences. Clearly, as it was mentioned before, social planner in our problem

faces a very similar time-inconsistency issue as every individual agent in the economy.
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Moreover, given the representation, we know that the resulting choice constitutes an

allocation arising in some competitive equilibrium.

In the following section we apply our results to a class of time separable preferences

with hyperbolic discounting.

4.4. Efficiency, social welfare and hyperbolic discounting

In general, our definition of efficiency does not coincide with Pareto efficiency with

respect to the initial selves, nor renegotiation-proofness. However, in some special cases

the three notions may be equivalent. We devote this section to one such example. In order

to make the paper self-contained, we formally reintroduce the two efficiency notions.12

Definition 5 Let Assumption 2 be satisfied.

(i) Allocation path x̂T ∈ ET is Pareto efficient with respect to the initial selves if there

exists no other x̂′T ∈ ET such that for all i ∈ I, uT (x̂′T ) ≥ uT (x̂T ), and for some i,

uT (x̂′T ) > uT (x̂T ).

(ii) Let RT := {x̂T ∈ ET | x̂T is recursively efficient}. Allocation path x̂T ∈ RT is

renegotiation-proof if there exists no other x̂′T ∈ RT such that for all i ∈ I, uiT (x̂′T ) ≥
uiT (x̂T ), and for some i, uT (x̂′T ) > uT (x̂T ).

We proceed with the following Proposition.

Proposition 5 Recall preferences in Example 1. Let for all i ∈ I, vi : Rn
+ → R be

strictly increasing, concave and once continuously differentiable, with limzk→0
∂vi

∂zk
(z) =∞,

for all k = 1, . . . , n. In addition, for all i ∈ I, let δi = δ and γi = γ. Then, any strictly

positive allocation path x̂T is Pareto efficient with respect to the initial selves if and only

if there exist a vector α∗ ∈ RI
++ such that x̂T is a recursive social welfare allocation for a

path of weights α̂T := (αt)t∈T , where ∀t ∈ T , αt = α∗. Moreover, x̂T is recursively efficient

and renegotiation-proof.

Proof: First, we prove (⇒). Let x̂T be a strictly positive allocation path, Pareto ef-

ficient with respect to the initial selves. By a well-known result (see Mas-Colell, Whin-

ston, and Green, 1995, Proposition 16.E.2), there exists some α∗ ∈ RI
+ such that x̂T ∈

argmaxx̂′T∈ET

∑
i∈I α

∗iuiT (x̂′iT ). Since vi is strictly increasing, ∀i ∈ I, α∗i > 0. Moreover,

12Note, that renegotiation-proofness was defined by Luttmer and Mariotti (2007) only for two period

economies. Therefore, we extend the definition in a way we think is accordant with the intuition of the

authors.
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x̂T satisfies the following necessary and sufficient first order conditions, ∀i, j ∈ I, t ∈ T :

α∗i∇vi(xit) = α∗j∇vj(xjt),∑
i∈I

xit =
∑
i∈I

eit.

Define a path of weights α̂T := (αt)t∈T , αt ∈ RI
+, such that ∀t ∈ T , αt = α∗. Note, that

the unique recursive social welfare allocation for the weights has to satisfy the first order

conditions as well. Therefore, it must be that x̂T ∈ ΨT (α̂iT ). Moreover, by Proposition 2

the allocation is recursively efficient.

Next, we show (⇐). Take any α∗ ∈ RI
++ and define α̂T := (αt)t∈T such that ∀t ∈ T ,

αt = α∗. Take some x̂T ∈ ΨT (α̂T ). Clearly, it satisfies the above first order conditions,

which implies that x̂T ∈ argmaxx̂′T∈ET

∑
i∈I α

∗iuiT (x̂′iT ). Hence, by Mas-Colell, Whinston,

and Green (1995, Proposition 16.E.2) it satisfies Definition 5(i). Again, by Proposition 2

the allocation is recursively efficient.

Finally, we show that x̂T is renegotiation-proof. Let RT be the set of all recursively

efficient allocations. Clearly, x̂T ∈ RT and RT ⊂ ET . Since x̂T is Pareto efficient with

respect to the initial selves, there exists no other allocation x̂′T in ET (hence, in RT )

such that for all i ∈ I, uiT (x̂′iT ) ≥ uiT (x̂iT ), and for some i, uiT (x̂′iT ) > uiT (x̂iT ). Therefore,

Definition 5(ii) is satisfied. Q.E.D.

The above result crucially uses the assumption that discount factors are symmetric

across consumers. Only then the first order conditions characterising all the three notions

of efficiency are equivalent. Moreover, the proposition above does not require the quasi-

hyperbolic specification of discounting. In fact, as long as values of discount factors in

each period are equal across consumers, the claim of Proposition 5 remains true.

Finally, Proposition 5 does not imply that competitive equilibria in the discussed class

of economies are efficient according to Definition 5(i). The result only states that alloca-

tions which are Pareto efficient with respect to the initial selves coincide with a class of

recursively efficient ones, which can be represented by a solution to the recursive social

welfare optimisation problem for some specific, time-invariant weights. In fact, by Luttmer

and Mariotti (2007, Proposition 3) show that in general such allocations do not arise in

a competitive equilibrium.

5. EFFICIENCY OF SEQUENTIAL EQUILIBRIA

As it was discussed in Section 2, our notion of equilibrium characterised in Definitions

1 and 1’ might be considered restrictive for two reasons. First of all, we require that at

each date t ∈ T , agents consume bundles xit equal to the inherited consumption rights yit.
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Therefore, the consumption path is determined by the initial self and cannot be altered

by the succeeding incarnations. Hence, even though our framework is dynamic, the notion

of equilibrium seems to be static, as choices are made only once. Clearly, since agents are

sophisticated, consumption plans determined in the initial period are time-consistent and

none of the future selves would strictly benefit from changing the plan. Still, one might

be willing to explore the implications of a more dynamic interaction.

Second of all, we require that for any date t prices of rights to period t consumption

acquired prior to t, and prices of the actual period t goods traded at time t, have to be

equal. The condition implies that the trade in the economy takes place only once, when

the initial, sophisticated agents trade their optimal, time-consistent consumption plans.

This once again imposes a static structure on an equilibrium.

In the following section we relax the two conditions, and claim that they do not affect

the welfare properties of equilibrium allocations discussed in the previous sections.

5.1. Sequential equilibrium in a two-period economy

First we introduce our definition for a simplified, two-period case. Assume that T =

{1, 0}. Each period we allow for the current selves to trade. In the initial period t =

1 we shall distinguish two types of markets: spot markets, where agent can trade the

current period consumption goods (i.e. consumption bundles in X1), and futures markets,

where consumers exchange their rights to future consumption (i.e. consumption bundles

in X0). We denote consumption in the initial period by xi1 ∈ X1, and rights to period 0

consumption traded at period 1 by yi1|0 ∈ X0. Moreover, let y1|0 := (yi1|0)i∈I ∈ XI
0 denote

an allocation of rights to period 0 consumption traded at date 1.

Let p1 ∈ Rn1
++ denote prices of date 1 consumption goods evaluated at period 1 spot

market. Let q1|0 ∈ Rn0
++ denote prices of rights to period 0 consumption, quoted at the

futures market at date 1. Given period 1 prices (p1, q1|0), the total wealth of consumer i

in period 1 is equal to the value of his total initial endowment p1 · ei1 + q1|0 · ei0. Hence,

the budget set of agent i at the initial date is determined by values of correspondence

B̃1 : Rn1
++ × Rn0

++ × X̂1 ⇒ X̂1,

(5.1) B̃1(p1, q1|0, ê
i
1) :=

{
(xi1, y

i
1|0) ∈ X̂1 | p1 · xi1 + q1|0 · yi1|0 ≤ p1 · ei1 + q1|0 · ei0

}
.

In the final period, given date 0 spot market prices p0 ∈ Rn0
++, the total wealth of

agent i is determined by the value of the rights to consumption yi1|0 inherited from the

previous period. Therefore, the budget set is determined by values of correspondence
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B̃0 : Rn0
++ ×X0 ⇒ X0,

(5.2) B̃0(p0, y
i
1|0) :=

{
xi0 ∈ X0 | p0 · xi0 ≤ p0 · yi1|0

}
.

Since no consumption takes place beyond date 0, there is no futures market in the final

period.

Next, we establish how the choice is determined in the final period. Take a vector

yi1|0 ∈ X0 of period 0 consumption rights, and period 0 spot market prices p0 ∈ Rn0
++. The

possible choices of period 0 self of agent i are determined by values of correspondence

Ṽ i
0 : Rn0

++ ×X0 ⇒ X0,

(5.3) Ṽ i
0 (p0, y

i
1|0) :=

{
xi0 ∈ X0 | xi0 is a �i0-g.e. of B̃i

0(p0, y
i
1|0)
}
,

similarly to (2.3). Given that agents are sophisticated, while acquiring (xi1, y
i
1|0) in the

initial period they take into account the actual consumption xi0 that will take place at

date 0. In particular, that xi0 ∈ Ṽ i
0 (p0, y

i
1|0). Hence, agents evaluate their preferences over

vectors (xi1, x
i
0) ∈ X̂1, where xi0 ∈ Ṽ i

0 (p0, y
i
1|0), rather than (xi1, y

i
1|0). Given path of prices

p̂1 := (p1, p0) and q1|0, period 1 selves evaluate the set of all affordable, time-consistent

consumption paths, i.e. values of correspondence F̃ i
0 : Rn1+n0

++ × Rn0
++ × X̂1 ⇒ X̂1,

(5.4) F̃ i
1(p̂1, q1|0, ê

i
1) :={
(xi1, x

i
0) ∈ X̂1

∣∣ xi0 ∈ Ṽ i
0 (p0, y

i
1|0), where (xi1, y

i
1|0) ∈ B̃i

1(p1, q1|0, ê
i
1)
}
,

and choose an element of F̃ i
1(p̂1, q1|0, ê

i
1) which maximises their current preferences. Hence,

the set of choices of date 1 self of agent i is determined by values of correspondence

Ṽ i
1 : Rn1+n0

++ × Rn0
++ × X̂1 ⇒ X̂1,

(5.5) Ṽ i
1 (p̂1, q1|0, ê

i
1) :=

{
(xi1, x

i
0) ∈ X̂1

∣∣ (xi1, x
i
0) is a �i1-g.e. of F̃ i

1(p̂1, q1|0, ê
i
1)
}
.

Note that the optimisation problem of sophisticated agents in the initial period is very

similar to the one introduced in (2.5), apart from two differences. First of all, we do not

require for prices of rights to period 0 consumption q1|0 to be equal to prices p0 of the actual

consumption taking place at date 0. Second of all, we allow for the actual consumption

taking place in period 0 – xi0, to differ from the inherited rights to consumption yi1|0. We

proceed with our definition of sequential equilibrium.

Definition 6 (Sequential equilibrium) Assume T = {1, 0}. A sequential equilibrium of

an economy starting at date 1 is a tuple of an allocation path x̂∗1, an allocation of period

0 consumption rights y∗1|0, a path of spot market prices p̂∗1, and futures market prices q∗1|0,

summarised by {x̂∗1, y∗1|0, p̂∗1, q∗1|0}, such that
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(i) given p̂∗1, q∗1|0, the initial selves choose an optimal, time-consistent consumption plan,

i.e. for all i ∈ I, x̂∗i1 ∈ Ṽ i
1 (p̂∗1, q

∗
1|0, ê

i
1);

(ii) given p̂∗1, q∗1|0, the rights to consumption are chosen consistently, i.e. for all i ∈ I,

(x∗i1 , y
∗i
1|0) ∈ B̃1(p∗1, q̂

∗
1|0, ê

i
1) and x∗i0 ∈ Ṽ i

0 (p∗0, y
∗i
1|0);

(iii) spot markets and futures markets clear, i.e.
∑

i∈I x
∗i
1 =

∑
i∈I e

i
1, and

∑
i∈I y

∗i
1|0 =∑

i∈I x
∗i
0 =

∑
i∈I e

i
0.

The above notion of sequential equilibrium is more general than the one characterised

in Definition 1. In particular, it introduces a sequence of spot and futures markets where

each period, the current selves can re-trade their consumption goods and claims.

5.2. Sequential equilibrium in a multiple-period economy

Let T be an arbitrary number in N. As in the two-period case, at each date t we

allow the current selves to trade on two types of markets: spot markets, where agents can

trade the current period consumption goods (i.e. consumption bundles in Xt), and futures

markets, where consumers may exchange their rights to future consumption (i.e. elements

in X̂t−1). The current consumption bundle is denoted by xit ∈ Xt. Let yt|k ∈ Xk be a

vector of rights to period k consumption, which were acquired on futures market at date

t. Therefore, a portfolio acquired at period t, of rights to consumption from date s till

period 0, is represented by ŷit|s := (yit|k)
s
k=0. By construction, we let ŷit|s := (yit|s, ŷ

i
t|s−1) =

(yit|s, y
i
t|s−1, . . . , ŷ

i
t|s′), for any s′ ≤ s.

An allocation of rights to date s consumption acquired in period t is denoted by yt|s :=

(yit|s)i∈I ∈ XI
s . At the same time, an allocation of portfolios acquired at date t of rights to

consumption following date s will be represented by ŷt|s := (ŷit|s)i∈I ∈ X̂I
s . Similarly, we

let ŷt|s := (yt|s, ŷt|s−1) = (yt|s, yt|s−1, . . . , ŷt|s′), for any s′ ≤ s.

Period t spot market prices are denoted by pt ∈ Rnt
++. Let Nt :=

∑t
s=0 ns. Hence,

p̂t = (ps)
t
s=0 ∈ RNt

++ denotes a path of spot market prices following date t. As in the case

of consumption paths, we have p̂t = (pt, p̂t−1) = (pt, pt−1 . . . , p̂t′), for any t′ ≤ t. Finally,

date t futures market prices to period k consumption goods are represented by qt|k ∈ Rnk
++.

Therefore, q̂t|s := (qt|k)
s
k=0 ∈ RNs

++ is a vector of prices quoted at the futures market in

period t for rights to consumption bundles following date s.

We construct the optimisation problem of date t self of agent i as follows. In the final

period 0, given spot market prices p0 and an inherited vector of rights to consumption

yi1|0, consumer i determines the set of �i0-greatest elements of B̃0(p0, y
i
1|0), defined in (5.2).

The set of his optimal choices is then Ṽ i
0 (p0, y

i
1|0), as in (5.3).
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In period t = 1, the consumer determines the set of all affordable, time-consistent con-

sumption paths and chooses the one which maximises his preferences. The only difference

with respect to the two-period case, is that at the beginning of period 1 the current self is

in possession of a portfolio of rights to date 1 and date 0 consumption bundles inherited

from period 2, ŷi2|1 ∈ X̂1, rather than êi1. Therefore, the set of affordable, time-consistent

consumption paths is F̃ i
1(p̂1, q1|0, ŷ

i
2|1), where correspondence F̃ i

1 is defined as in (5.4).

Similarly, the set of choices is Ṽ i
1 (p̂1, q1|0, ŷ

i
2|1), where Ṽ i

1 is defined as in (5.5).

By backward induction, we determine the set of all affordable and time-consistent con-

sumption paths for any t. At the beginning of time t, every consumer has a portfolio of

rights to consumption following date t, ŷit+1|t := (yit+1|s)
t
s=0 ∈ X̂t, which was acquired on

the futures market in the preceding period – (t + 1). The budget set is then determined

by values of correspondence B̃t : Rnt
++ × RNt−1

++ × X̂t ⇒ X̂t,

(5.6) B̃t(pt, q̂t|t−1, ŷ
i
t+1|t) :={

(xit, ŷ
i
t|t−1) ∈ X̂t

∣∣ pt · xit + q̂t|t−1 · ŷit|t−1 ≤ pt · yit+1|t + q̂t|t−1 · ŷit+1|t−1

}
.

Hence, the set of affordable and time-consistent choices is determined by F̃ i
t : RNt

++ ×
R

∑t−1
s=0Ns

++ × X̂t ⇒ X̂t,

(5.7) F̃ i
t

(
p̂t, (q̂s|s−1)ts=1, ŷ

i
t+1|t

)
:={

(xit, x̂
i
t−1) ∈ X̂t

∣∣ x̂it−1 ∈ Ṽ i
t−1(p̂t−1, (q̂s|s−1)t−1

s=1, ŷ
i
t|t−1),

where (xit, ŷ
i
t|t−1) ∈ B̃t(pt, q̂t|t−1, ŷ

i
t+1|t)

}
,

where Ṽ i
t−1(p̂t−1, (q̂s|s−1)t−1

s=1, ŷ
i
t|t−1) is the set of optimal, time-consistent choices of the

following self at date (t − 1). Being consistent with our recursive structure, the set is

determined by values of correspondence Ṽ i
t : RNt

++ × R
∑t−1

s=0Ns

++ × X̂t ⇒ X̂t,

(5.8) Ṽ i
t

(
p̂t, (q̂s|s−1)ts=1, ŷ

i
t+1|t

)
:=
{
x̂it ∈ X̂t

∣∣ x̂it is a �it-g.e. of F̃ i
t

(
p̂t, (q̂s|s−1)ts=1, ŷ

i
t+1|t

)}
.

Note, that correspondences F̃ i
t and Ṽ i

t are constructed analogously to correspondences

F i
t and V i

t in Section 2.2. However, there are two differences. First of all, prices of rights to

consumption and the actual consumption may differ, which is implied by different notation

for the spot market price of date t consumption – pt, and rights to period t consumption

acquired at date k – qk|t. Moreover, note that prices of rights to consumption at date t,

acquired in any two periods k and k′, where k, k′ ≥ t, denoted respectively by qk|t and qk′|t,

may also be different, since they are quoted at different moments in time. For this reason,

when making a choice at time t, the current period self needs to take into account not
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only the path of the spot market prices following date t, but also the prices of portfolios

quoted at the futures markets in every period following date t.

Second of all, we do not require that the rights to consumption inherited from the

previous period coincide with the actual consumption. Note that by definition of set

F̃ i
t (p̂t, (q̂s|s−1)ts=1, ŷ

i
t+1|t), we consider consumption path x̂it = (xit, x̂

i
t−1) to be time consis-

tent, if there exists a portfolio ŷit|t−1 which is affordable, i.e (xit, ŷ
i
t|t−1) ∈ B̃t(pt, q̂t|t−1, ŷ

i
t+1|t),

and once the following self inherits ŷit|t−1, consumption path x̂it−1 constitutes one of his

optimal choices, i.e. x̂it−1 ∈ Ṽ i
t−1(p̂t−1, (q̂s|s−1)t−1

s=1, ŷ
i
t|t−1).

The above specification of the consumer optimisation problem admits a much more

sophisticated behaviour of agents. In particular, it might be that case, that even though

at time t the current self cannot afford x̂it−1, i.e. (xit, x̂
i
t−1) 6∈ B̃t(pt, q̂t|t−1, ŷ

i
t+1|t), he may

acquire a portfolio ŷit|t−1 such that x̂it−1 ∈ Ṽ i
t−1(p̂t−1, (q̂s|s−1)t−1

s=1, ŷ
i
t|t−1). Therefore, even

though some consumption bundles might not be affordable at the current set of prices, it

is possible that once an agent finds himself in a different period, the bundle might become

affordable under the new set of prices.

We define a generalised notion of competitive equilibrium introduced in Definition 6.

Definition 6’ (Sequential equilibrium) Given the endowment distribution (êiT )i∈I , a

sequential equilibrium of an economy starting at date T is a tuple of an allocation path

x̂∗T , a sequence of portfolio allocations (ŷ∗t|t−1)Tt=1, a path of spot market prices p̂∗T , and a se-

quence of futures market prices (q̂∗t|t−1)Tt=1, summarised by {x̂∗T , (ŷ∗t|t−1)Tt=1, p̂
∗
T , (q̂

∗
t|t−1)Tt=1},

such that

(i) given p̂∗T and (q̂∗t|t−1)Tt=1, the initial selves choose an optimal, time-consistent con-

sumption plan, i.e. for all i ∈ I, x̂∗iT ∈ Ṽ i
T (p̂∗T , (q̂

∗
t|t−1)Tt=1, ê

i
T );

(ii) given p̂∗T and (q̂∗t|t−1)Tt=1, the rights to consumption are chosen consistently, i.e. for

all (i, t) ∈ I × T/{0}, we have (x∗it , ŷ
∗i
t|t−1) ∈ B̃t(p

∗
t , (q̂

∗
s|s−1)ts=1, ŷ

i
t+1|t) and x̂∗it ∈

Ṽ i
t (p̂∗t , (q̂

∗
s|s−1)ts=1, ŷ

∗i
t|t−1), where ŷ∗iT+1|T = êiT ;

(iii) spot and futures markets clear, i.e. for all t ∈ T , and any s < t, we have
∑

i∈I y
∗i
t|s =∑

i∈I x
i
s =

∑
i∈I e

i
s.

Clearly, in the two-period case Definitions 6 and 6’ are equivalent. The following result

is directly implied by the above definition.

Corollary 5 Let {x̂∗T , (ŷ∗t|t−1)Tt=1, p̂
∗
T , (q̂

∗
t|t−1)Tt=1} be a sequential equilibrium of an econ-

omy starting at date T . Then, for any t ≤ T , {x̂∗t , (ŷ∗s|s−1)ts=1, p̂
∗
t , (q̂

∗
s|s−1)ts=1} is a sequential

equilibrium of an economy starting at date t, for distribution of endowments (ŷ∗it+1|t)i∈I .
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Proof: Let {x̂∗T , (ŷ∗t|t−1)Tt=1, p̂
∗
T , (q̂

∗
t|t−1)Tt=1} be a sequential equilibrium. Take any t ≤ T ,

and adjust Definition 6’ for T = t, with (ŷ∗it+1|t)i∈I being the distribution of the initial

endowment. Clearly, condition (iii) of Definition 6’ is satisfied. By construction, ∀i ∈ I

and t ≤ T , x̂∗iT ∈ Ṽ i
T (p̂∗T , (q̂

∗
t|t−1)Tt=1, ê

i
T ) implies x̂∗it ∈ Ṽ i

t (p̂∗t , (q̂
∗
s|s−1)ts=1, ŷ

∗i
t+1|t). Hence,

conditions (i) and (ii) also hold. Q.E.D.

What is interesting, is that even though the above definition seems to be more gen-

eral and admit more sophisticated interaction between agents and their different selves,

the notions of competitive and sequential equilibrium are equivalent, as we show in the

following section.

5.3. Equilibrium equivalence

Before we state our equivalence result, we show several properties of sequential equilibria

which might be of a separate interest.

Proposition 6 Let Assumption 1 be satisfied and {x̂∗T , (ŷ∗t|t−1)Tt=1, p̂
∗
T , (q̂

∗
t|t−1)Tt=1} be a

sequential equilibrium. Then, for all (i, t) ∈ I×T , we have q̂∗t+1|t · x̂∗it = q̂∗t+1|t · ŷ∗it+1|t, where

ŷ∗iT+1|T = êiT , and q̂∗T+1|T = (p∗T , q̂
∗
T |T−1). Moreover, p∗0 · x∗i0 = p∗0 · y∗i1|0.

The argument supporting the above claim is rather extensive, hence we presented it in

the Appendix. In the main body of the paper we prove a two-period version of the above

proposition. Consider the following corollary.

Corollary 6 Assume T := {1, 0}. Let Assumption 1 be satisfied and {x̂∗1, y∗1|0, p̂∗1, q∗1|0}
be a sequential equilibrium. Then, for all i ∈ I, we have q∗1|0 · x∗i0 = q∗1|0 · y∗i1|0 and p∗0 · x∗i0 =

p∗0 · y∗i1|0.

Proof: By Assumption 1 we have ∀i ∈ I, p∗0 · x∗i0 = p∗0 · y∗i1|0. Hence, it suffices to prove

that q∗1|0 · x∗i0 = q∗1|0 · y∗i1|0.

First, we claim that q∗1|0 · y∗i1|0 ≤ q∗1|0 · x∗i0 . Assume the opposite, i.e. q∗1|0 · y∗i1|0 > q∗1|0 · x∗i0 .

Then we have p∗1 ·x∗i1 +q∗1|0 ·x∗i0 < p∗1 ·x∗i1 +q∗1|0 ·y∗i1|0 ≤ p∗1 ·ei1+q∗1|0 ·ei0. By Assumption 1, there

exists a x′i1 ∈ X1 such that (x′i1 , x
∗i
0 ) ∈ B̃1(p∗1, q

∗
1|0, ê

i
1) and (x′i1 , x

∗i
0 ) �i1 x̂∗i1 . By definition,

we have x∗i0 ∈ Ṽ i
0 (p∗0, y

∗i
1|0). Since p∗0 ·x∗i0 = p∗0 ·y∗i1|0, this implies that x∗i0 ∈ Ṽ i

0 (p∗0, x
∗i
0 ), which

contradicts that x̂∗i1 ∈ Ṽ i
1 (p̂∗1, q

∗
1|0, ê

i
1).

Next, we show that q∗1|0 · y∗i1|0 ≥ q∗1|0 · x∗i0 . By the previous argument we know that

∀i ∈ I, q∗1|0 · y∗i1|0 ≤ q∗1|0 · x∗i0 . Assume that for some i we have q∗1|0 · y∗i1|0 < q∗1|0 · x∗i0 .

Then q∗1|0 ·
∑

i∈I y
∗i
1|0 < q∗1|0 ·

∑
i∈I x

∗i
0 . However, by condition (iii) of Definition 6, we have
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i∈I y

∗i
1|0 =

∑
i∈I x

∗i
0 =

∑
i∈I e

i
0. Hence, it must be that q∗1|0 ·

∑
i∈I y

∗i
1|0 ≥ q∗1|0 ·

∑
i∈I x

∗i
0 ,

which yields contradiction. Q.E.D.

Proposition 6 implies that in any sequential equilibrium, all agents can afford their actu-

ally consumed paths of bundles. Moreover, in any period the value of their portfolio equals

the value of the equilibrium consumption path. This implies the following proposition.

Proposition 7 Let Assumption 1 be satisfied and {x̂∗T , (ŷ∗t|t−1)Tt=1, p̂
∗
T , (q̂

∗
t|t−1)Tt=1} be a

sequential equilibrium. Then, tuple {x̂∗T , (ŷ′t|t−1)Tt=1, p̂
∗
T , (q̂

∗
t|t−1)Tt=1}, where for all (i, t) ∈

I × T/{0}, we have ŷ′it|t−1 = x̂∗it−1, is also a sequential equilibrium.

Once again, we move the proof of the result to the Appendix and present an argument

supporting the two-period case of the above proposition.

Corollary 7 Assume T = {1, 0}. Let Assumption 1 be satisfied, and {x̂∗1, y∗1|0, p̂∗1, q∗1|0}
be a sequential equilibrium. Then {x̂∗1, x∗0, p̂∗1, q∗1|0} is also a sequential equilibrium.

Proof: Let {x̂∗1, y∗1|0, p̂∗1, q∗1|0} be a sequential equilibrium. We need to verify, that tuple

{x̂∗1, x∗0, p̂∗1, q∗1|0} is also a sequential equilibrium. Clearly, condition (iii) of Definition 6 is

satisfied. Therefore, it suffices to verify that conditions (i) and (ii) hold.

By Corollary 6, we have ∀i ∈ I, q∗1|0 · x∗i0 = q∗1|0 · y∗i1|0. Hence, (x∗i1 , x
∗i
0 ) ∈ B̃i

1(p∗1, q
∗
1|0, ê

i
1).

Moreover, ∀i ∈ I, p∗0 ·x∗i0 = p∗0 ·y∗i1|0. Therefore, x∗i0 ∈ Ṽ i
0 (p∗0, x

∗i
0 ), which implies that ∀i ∈ I,

x̂∗i1 ∈ Ṽ i
1 (p̂∗1, q

∗
1|0, ê

i
1). Q.E.D.

In the following proposition we establish that at any period t, equilibrium spot prices

of period t consumption p∗t are equal to the futures market prices q∗s|t, quoted at any date

s ≥ t.

Proposition 8 Let Assumption 1 be satisfied and
∑

i∈I ê
i
T−1 be strictly positive. Then,

for any sequential equilibrium {x̂∗T , (ŷ∗t|t−1)Tt=1, p̂
∗
T , (q̂

∗
t|t−1)Tt=1}, we have q̂∗s|t = (p∗t , q̂

∗
t|t−1)

and q∗1|0 = p∗0 (up to a scalar), for any t ∈ T and s ≥ t.

We prove a two-period version of the above corollary, while the general argument is

presented in the Appendix.13

Corollary 8 Assume T = {1, 0}. Let Assumption 1 be satisfied and
∑

i∈I e
i
0 be strictly

positive. Then, for any sequential equilibrium {x̂∗1, y∗1|0, p̂∗1, q∗1|0}, we have q∗1|0 = p∗0 (up to

a scalar).

13I am grateful to John Quah for useful comments which allowed me to simplify the proof.
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Proof: Let {x̂∗1, y∗1|0, p̂∗1, q∗1|0} be a sequential equilibrium. For any i ∈ I define sets

P (x∗i0 ) := {xi0 ∈ X0 | p∗0 · xi0 = p∗0 · x∗i0 } and Q(x∗i0 ) := {xi0 ∈ X0 | q∗1|0 · xi0 = q∗1|0 · x∗i0 }. By

definition x∗i0 ∈ P (x∗i0 ) ∩Q(x∗i0 ).

First, we claim that for any xi0 ∈ P (x∗i0 ), we have q∗1|0 · xi0 ≥ q∗1|0 · x∗i0 . We show it by

contradiction. Assume that there exists i ∈ I and xi0 ∈ P (x∗i0 ) such that q∗1|0 ·xi0 < q∗1|0 ·x∗i0 .

Then, Assumption 1 and Corollary 6 imply that p∗1 · x∗i1 + q∗1|0 · xi0 < p∗1 · x∗i1 + q∗1|0 · x∗i0 =

p∗1 ·x∗i1 + q∗1|0 · y∗i1|0 ≤ p∗1 · ei1 + q∗1|0 · ei0. In addition, Corollary 6 implies that p∗0 ·x∗i0 = p∗0 · y∗i1|0,

and since xi0 ∈ P (x∗i0 ), we have p∗0 ·xi0 = p∗0 ·y∗i1|0. Therefore, B̃0(p∗0, x
i
0) = B̃0(p∗0, y

∗i
1|0), which

implies that x∗i0 ∈ Ṽ i
0 (p∗0, x

i
0). By Assumption ??, there exists some x′i1 ∈ X1 such that

(x′i1 , x
i
0) ∈ B̃1(p∗1, q

∗
1|0, ê

i
1) and (x′i1 , x

∗i
0 ) �i1 x̂∗i1 , which contradicts that x̂∗i1 ∈ Ṽ i

1 (p̂∗1, q
∗
1|0, ê

i
1).

Hence, q∗1|0 · xi0 ≥ q∗1|0 · x∗i0 .

Next, assume that q∗1|0 6= p∗0 (up to a scalar). By Lemma A.5 and the above claim, this

implies that P (x∗i0 ) ∩ Q(x∗i0 ) ⊂ ∂X0. For all i ∈ I, define νi = (p∗0 · x∗i0 )/(p∗0 ·
∑

i∈I e
i
0),

and xiν = νi
∑

i∈I e
i
0. By construction, ∀i ∈ I, we have xiν ∈ P (x∗i0 ). Moreover, the market

clearing condition implies
∑

i∈I ν
i = 1.

Since
∑

i∈I e
i
0 is strictly positive, whenever x∗i0 is non-zero it must be that xiν 6∈ P (x∗i0 )∩

Q(x∗i0 ). Hence, q∗1|0 · xiν > q∗1|0 · x∗i0 , as well as q∗1|0 ·
∑

i∈I x
i
ν > q∗1|0 ·

∑
i∈I x

∗i
0 . However, then

q∗1|0 ·
∑

i∈I e
i
0 = q∗1|0 ·

∑
i∈I x

i
ν > q∗1|0 ·

∑
i∈I x

∗i
0 = q∗1|0 ·

∑
i∈I e

i
0. Contradiction. Q.E.D.

Propositions 6 and 8 have an important implication, which we state in the following

proposition.

Proposition 9 (Equilibrium equivalence) Let Assumption 1 be satisfied and
∑

i∈I ê
i
T−1

be strictly positive. Then {x̂∗T , p̂∗T} is a competitive equilibrium if and only if there exist

sequences (ŷ∗t|t−1)Tt=1 and (q̂∗t|t−1)Tt=1 such that {x̂∗T , (ŷ∗t|t−1)Tt=1, p̂
∗
T , (q̂

∗
t|t−1)Tt=1} is sequential

equilibrium.

Proof: First we prove (⇒). Let {x̂∗T , p̂∗T} be a competitive equilibrium. We claim that

{x̂∗T , (ŷ∗t|t−1)Tt=1, p̂
∗
T , (q̂

∗
t|t−1)Tt=1}, where for all t ∈ T , s > t, y∗is|t = x∗it and q∗s|t = p∗t , is

a sequential equilibrium. Clearly, conditions (ii) and (iii) of Definition 6’ are satisfied.

Moreover, in this case Ṽ i
T (p̂∗T , (q̂

∗
t|t−1)Tt=1, ê

i
T ) = V i

T (p̂∗T , ê
i
T ). Hence condition (i) also holds.

To show (⇐), assume that {x̂∗T , (ŷ∗t|t−1)Tt=1, p̂
∗
T , (q̂

∗
t|t−1)Tt=1} is a sequential equilibrium.

By Proposition 6, so is {x̂∗T , (ŷ′t|t−1)Tt=1, p̂
∗
T , (q̂

∗
t|t−1)Tt=1}, where ∀t ∈ T , s > t, ŷ′s|t = x̂∗t .

Moreover, by Proposition 8, ∀t ∈ T , s > 0, q̂∗s|t = (p∗t , q̂
∗
t|t−1) and q∗1|0 = p∗0 (up to a scalar).

Hence, it is always possible to normalise prices such that q∗s|t = p∗t , for all t ∈ T , s > t.

Clearly, condition (ii) of Definition 1’ is satisfied. Since Ṽ i
T (p̂∗T , (q̂

∗
t|t−1)Tt=1, ê

i
T ) = V i

T (p̂∗T , ê
i
T ),

so is (i). Q.E.D.
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Note, that in general there is a greater number of sequential equilibria than competitive

equilibria, simply by the fact that there are many variations of portfolio structure which

support the same equilibrium allocation x̂∗T . However, if one is interested solely in the

actual consumption taking place in the equilibrium, then the two notions give equivalent

implications.

APPENDIX

We begin this section with several lemmas used in the proofs of our main results. First we

determine properties of optimal choices of consumers in a multi-period economy defined

in Section 2.2. The notation used in the argument below refers to the one presented in

that section.

Lemma A.1 For any t ∈ T , p̂t ∈ RNt
++ and ŷ′it , ŷit ∈ X̂t such that p̂t · ŷ′it = p̂t · ŷit, we have

F i
t (p̂t, ŷ

′i
t ) = F i

t (p̂t, ŷ
i
t) and V i

t (p̂t, ŷ
′i
t ) = V i

t (p̂t, ŷ
i
t).

Proof: Take any t ∈ T and any two ŷ′it , ŷit ∈ X̃t such that p̂t · ŷ′it = p̂t · ŷit. By defini-

tion, F i
t (p̂t, ŷ

i
t) :=

{
(xit, x̂

i
t−1) ∈ Bt(p̂t, ŷ

i
t) | x̂it−1 ∈ V i

t−1(p̂t−1, x̂
i
t−1)
}
. Clearly, Bt(p̂t, ŷ

i
t) =

Bt(p̂t, ŷ
′i
t ), hence F i

t (p̂t, ŷ
i
t) = F i

t (p̂t, ŷ
′i
t ). Since V i

t (p̂t, ŷ
i
t) and V i

t (p̂t, ŷ
′i
t ) contain the �it-

greatest elements of F i
t (p̂t, ŷ

i
t) and F i

t (p̂t, ŷ
′i
t ) respectively, the two sets are equal. Q.E.D.

Lemma A.2 Let x̂it ∈ V i
t (p̂t, x̂

i
t). Then, for any x̂′it ∈ X̂t such that for all t′ ≤ t, x̂′it′ ∼it′ x̂it′

and p̂t′ · x̂′it′ = p̂t′ · x̂it′, we have x̂′it ∈ V i
t (p̂t, x̂

i
t).

Proof: We prove the result by induction. First consider the final period 0, and let

xi0 ∈ V i
0 (p0, x

i
0). Take some x′i0 ∈ X0 such that x′i0 ∼i0 xi0 and p0 · x′i0 = p0 · xi0. Clearly,

x′i0 ∈ B0(p0, x
i
0). Since x′i0 ∼i0 xi0, we have x′i0 ∈ V i

0 (p0, x
i
0).

Next, take any t ∈ T and x̂it ∈ V i
t (p̂t, x̂

i
t). Let x̂′it ∈ X̂t be such that ∀t′ ≤ t, we

have x̂′it′ ∼it′ x̂it′ and p̂t′ · x̂′it′ = p̂t′ · x̂it′ . Assume that x̂′it−1 ∈ V i
t−1(p̂t−1, x̂

i
t−1). Lemma

A.1 implies that x̂′it−1 ∈ V i
t−1(p̂t−1, x̂

′i
t−1). Moreover, by definition we have F i

t (p̂t, x̂
i
t) :={

(zit, ẑ
i
t−1) ∈ Bt(p̂t, x̂

i
t) | ẑit−1 ∈ V i

t−1(p̂t−1, ẑ
i
t−1)
}
. Clearly, x̂′it ∈ Bt(p̂t, x̂

i
t). Since x̂′it−1 ∈

V i
t−1(p̂t−1, x̂

′i
t−1), we have x̂′it ∈ F i

t (p̂t, x̂
i
t). Hence, x̂′it ∈ V i

t (p̂t, x̂
i
t), which completes the

proof. Q.E.D.

Now we can proceed with the proof of Theorem 1. We obtain the result by induc-

tion. However, since the proof is extensive, we present it through a sequence of claims.

Throughout the following argument we assume that {x̂∗T , p̂∗T} is a competitive equilibrium

satisfying Definition 1’.
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Claim A.1 Allocation x∗0 is post-0 efficient. Moreover, for any x0 ∈ E0 such that for all

i ∈ I, xi0 ∼i0 x∗i0 , we have p∗0 · xi0 = p∗0 · x∗i0 , for all i ∈ I.

Proof: Since {x̂∗T , p̂∗T} is a competitive equilibrium, by Corollary 1 pair {x̂∗1, p̂∗1} is

a competitive equilibrium of an economy starting at date 1, given the distribution of

endowments (x̂∗i1 )i∈I . The rest follows from Claims 2 and 3 in Section 3.2. Q.E.D.

Claim A.2 Take any x̂it+1 ∈ X̂t+1 such that for all t′ ≤ t, x̂it′ ∼it′ x̂∗it′ and p̂∗t′ ·x̂it′ = p̂∗t′ ·x̂∗it′ .
Then x̂it+1 �it+1 x̂

∗i
t+1 ⇒ p∗t+1·xit+1 ≥ p∗t+1·x∗it+1 and x̂it+1 �it+1 x̂

∗i
t+1 ⇒ p∗t+1·xit+1 > p∗t+1·x∗it+1.

Proof: Since {x̂∗T , p̂∗T} is a competitive equilibrium, by Corollary 1 {x̂∗t , p̂∗t} is a competi-

tive equilibrium following date t, for the distribution of endowments (x̂∗it )i∈I . In particular,

∀i ∈ I, x̂∗it ∈ V i
t (p̂∗t , x̂

∗i
t ). Similarly, {x̂∗t+1, p̂

∗
t+1} is a competitive equilibrium following date

t+ 1, for distribution of endowments (x̂∗it+1)i∈I . Hence x̂∗it+1 ∈ V i
t+1(p̂∗t+1, x̂

∗i
t+1) for all i. Let

x̂it+1 = (xit+1, x̂
i
t) ∈ X̂t+1 be specified as in the thesis of the claim. Given the assumptions

as well as Lemmas A.1 and A.2, we have x̂it, x̂
∗i
t ∈ V i

t (p̂∗t , x̂
∗i
t ), for any i.

We begin with proving the first part of the claim by contradiction. Assume that x̂it+1 �it+1

x̂∗it+1, and p∗t+1 · xit+1 < p∗t+1 · x∗it+1. Since ∀t′ ≤ t, p̂∗t′ · x̂it′ = p̂∗t′ · x̂∗it′ , we have p∗t+1 · xit+1 +

p̂∗t · x̂it < p∗t+1 · x∗it+1 + p̂∗t · x̂∗it . By Assumption 1, there exists some x′it+1 ∈ Xt+1 such that

(x′it+1, x̂
i
t) ∈ Bt+1(p̂∗t+1, x̂

∗i
t+1) and (x′it+1, x̂

i
t) �it+1 x̂

i
t+1. Therefore, (x′it+1, x̂

i
t) �it+1 x̂

∗i
t+1.

Recall that by Lemma A.1, x̂it ∈ V i
t (p̂∗t , x̂

∗i
t ) = V i

t (p̂∗t , x̂
i
t). Hence, (x′it+1, x̂

i
t) belongs to

F i
t+1(p̂∗t+1, x̂

∗i
t+1). This contradicts that x̂∗it+1 ∈ V i

t+1(p̂∗t+1, x̂
∗i
t+1), so it must be that x̂it+1 �it+1

x̂∗it+1 ⇒ p∗t+1 · xit+1 ≥ p∗t+1 · x∗it+1.

Next, assume that x̂it+1 �it+1 x̂
∗i
t+1. By the first part of the claim, we know that p∗t+1 ·

xit+1 ≥ p∗t+1 · x∗it+1. Let p∗t+1 · xit+1 = p∗t+1 · x∗it+1. Then x̂it+1 ∈ Bt+1(p̂∗t+1, x̂
∗i
t+1). Moreover,

since x̂it ∈ V i
t (p̂∗t , x̂

∗i
t ) = V i

t (p̂∗t , x̂
i
t) (by Lemma A.2), we have x̂it+1 ∈ F i

t+1(p̂∗t+1, x̂
∗i
t+1). This

contradicts that x̂∗it+1 ∈ V i
t+1(p̂∗t+1, x̂

∗i
t+1). Therefore, we have x̂it+1 �it+1 x̂

∗i
t+1 ⇒ p∗t+1 ·xit+1 >

p∗t+1 · x∗it+1. Q.E.D.

Claim A.3 Let x̂∗t be post-t efficient for some t ∈ T . Moreover, assume that for any

feasible x̂t+1 ∈ Et+1 we have that if for all i ∈ I and all t′ ≤ t, x̂it′ ∼it′ x̂∗it′ , then for all

i ∈ I and all t′ ≤ t, p̂∗t′ · x̂it′ = p̂∗t′ · x̂∗it′ . Then x̂∗t+1 is post-(t+ 1) efficient.

Proof: We prove the claim by contradiction. Assume, that x̂∗t+1 is not post-(t + 1)

efficient. Therefore, there exists some other x̂t+1 ∈ Et+1 such that ∀i ∈ I and ∀t′ ≤ (t+1),

we have x̂it′ �it′ x̂∗it′ , and for some i and t′ ≤ (t+ 1), x̂it′ �it′ x̂∗it′ .
By assumption, x̂∗t is post-t efficient, so it must be that ∀i ∈ I and ∀t′ ≤ t, x̂it′ ∼it′ x̂∗it′ .

Therefore, for the above statement to hold we must have ∀i ∈ I, x̂it+1 �it+1 x̂
∗i
t+1, and
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for some i, x̂it+1 �it+1 x̂∗it+1. Claim A.2 and the market clearing condition imply that

p∗t+1 ·
∑

i∈I x
i
t+1 > p∗t+1 ·

∑
i∈I x

∗i
t+1 = p∗t+1 ·

∑
i∈I e

i
t+1. But, x̂t+1 ∈ Et+1, so in particular

p∗t+1 ·
∑

i∈I x
i
t+1 ≤ p∗t+1 ·

∑
i∈I e

i
t+1. Contradiction. Q.E.D.

Claim A.4 Take any x̂t+1 ∈ Et+1 such that for all i ∈ I and all t′ ≤ t, x̂it′ ∼it′ x̂∗it′ and

p̂∗t′ · x̂it′ = p̂∗t′ · x̂∗it′ . If for all i ∈ I, x̂it+1 ∼it+1 x̂
∗i
t+1, then for all i ∈ I, p̂∗t+1 · x̂it+1 = p̂∗t+1 · x̂∗it+1.

Proof: Take any x̂t+1 ∈ Et+1 which satisfies the thesis of the claim. By Claim A.2, we

know that ∀i ∈ I, whenever x̂it+1 ∼it+1 x̂
∗i
t+1, then p∗t+1 · xit+1 ≥ p∗t+1 · x∗it+1. Assume that for

some i, p∗t+1 · xit+1 > p∗t+1 · x∗it+1. Then p∗t+1 ·
∑

i∈I x
i
t+1 > p∗t+1 ·

∑
i∈I x

∗i
t+1 = p∗t+1 ·

∑
i∈I e

i
t+1.

Since x̂t+1 is feasible, in particular
∑

i∈I p
∗
t+1 · xit+1 ≤

∑
i∈I p

∗
t+1 · eit+1. Contradiction.

To complete the proof, recall that by assumption ∀i ∈ I and ∀t′ ≤ t, we have p̂∗t′ ·
x̂it′ = p̂∗t′ · x̂∗it′ . By the above argument ∀i ∈ I, p∗t+1 · xit+1 = p∗t+1 · x∗it+1. Hence, ∀i ∈ I,

p̂∗t+1 · x̂it+1 = p̂∗t+1 · x̂∗it+1. Q.E.D.

Given the necessary prerequisites, we proceed with the proof of our first main theorem.

Proof of Theorem 1: Let {x̂∗T , p̂∗T} be a competitive equilibrium. We prove the result

by induction. First, consider the final period 0. By Claim A.1, we know that x∗0 is post-

0 efficient. Moreover, for any x0 ∈ E0 such that ∀i ∈ I, xi0 ∼i0 x∗i0 , we have ∀i ∈ I,

p∗0 · xi0 = p∗0 · x∗i0 .

By Claim A.3, we know that whenever x̂∗t is post-t efficient, and for any xt ∈ Et such

that ∀i ∈ I and ∀t′ ≤ t, x̂it′ ∼it′ x̂∗it′ implies that ∀i ∈ I and ∀t′ ≤ t, p̂∗t′ · x̂it′ = p̃∗t′ · x̃∗it′ , then

x̂∗t+1 is post-(t+ 1) efficient. In addition, Claim A.4 implies that for any x̂t+1 ∈ Et+1 such

that ∀i ∈ I and ∀t′ ≤ (t+1), x̂it′ ∼it′ x̂∗it′ , we have ∀i ∈ I and ∀t′ ≤ (t+1), p̂∗t′ · x̂it′ = p̂∗t′ · x̂∗it′ .
Since the property is satisfied by the allocation in period 0, it also satisfied at any period

t ∈ T . Therefore, for any t ∈ T , allocation x̂∗t is post-t efficient, and so it is recursively

efficient. Q.E.D.

Proof of Theorem 2: Assume that x̂T is a recursively efficient allocation. We prove

the result by induction. First, take t = 0. Let u0 : XI
0 → RI , be defined as u0 := (ui0)i∈I ,

and U ′0 := u0(E0). Since ∀i ∈ I, ui0 is convex, it is also continuous (see Rockafellar,

1970, Theorem 10.1). Therefore, by compactness of E0, U ′0 is compact. Let U0 := {u ∈
RI | ∀x′0 ∈ E0, ∀i ∈ I, ui ≤ ui0(x′i0 )}. By Assumption 3, U0 is convex. Moreover, by

construction U0 = U ′0 − RI
+. Hence, U0 is closed and bounded above.

Denote u∗0 = u(x0). By definition of x̂T , there exists no other x′0 ∈ E0 such that ∀i ∈ I,

ui0(x′i0 ) ≥ ui0(xi0), and ui0(x′i0 ) > ui(xi0) for some i. Hence, it must be that u∗0 ∈ ∂U0. By

the separating hyperplane theorem (see, e.g. Aliprantis and Border, 2006, Theorem 7.30),
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there exists some non-zero vector α0 ∈ RI such that ∀u ∈ U0, α0 · u∗0 ≥ α0 · u. Since

U0 − RI
+ ⊂ U0, it must be that α0 ∈ RI

+. By construction, this implies that x0 ∈ Ψ0(α0).

Finally, by strict concavity of ui0 and convexity of E0, it must be that {x0} = Ψ0(α0).

Next, take any t ∈ T . Assume that there exists a path of non-zero, positive vectors

α̂t such that Ψt(α̂t) = {x̂t}. Clearly, in this case Γt+1(α̂t) is compact and convex. Let

ut+1 : X̃I
t+1 → RI be define by ut+1 := (uit+1)i∈I , and U ′t+1 := ut+1(Γt+1). Since ∀x̂it ∈ X̂t,

uit+1(xit+1, x̂
i
t) is concave with respect to xit+1, it is also continuous with respect to xit+1

(by Rockafellar, 1970, Theorem 10.1). Therefore, U ′t+1 is compact. Let Ut+1 := {u ∈
RI | ∀x̂′t+1 ∈ Γt+1(α̂t), ∀i ∈ I, ui ≤ uit+1(x̂′it+1)}, which is convex. Moreover, Ut+1 :=

U ′t+1 − RI
+. Compactness of U ′t+1 implies that Ut+1 is closed and bounded above.

To complete the proof denote u∗t+1 = ut+1(x̂t+1). By definition, x̂t+1 is post-(t + 1)

efficient, so it must be that u∗t+1 ∈ ∂Ut+1. By the separating hyperplane theorem (see

Aliprantis and Border, 2006, Theorem 7.30), there exists some non-zero vector αt+1 ∈ RI

such that ∀u ∈ Ut+1, αt+1 ·u∗t+1 ≥ αt+1 ·u. Since Ut+1−RI
+ ⊂ Ut+1, it must be that αt+1 ∈

RI
+. Therefore, by construction x̂t+1 ∈ Ψt+1(α̂t+1), where α̂t+1 := (αt+1, α̂t). Eventually,

as ∀x̂it ∈ X̂t, u
i
t+1(xit+1, x̂

i
t) is strictly concave with respect to xit+1 and Γt convex, we have

Ψt+1(α̂t+1) = {x̂t+1}. Q.E.D.

Before we proceed with proofs of results presented in Section 5.3, we introduce the

following lemmas.

Lemma A.3 For any p̂t ∈ RNt
++, (q̂s|s−1)ts=1 ∈ R

∑t−1
s=0Ns

++ , and ŷit+1|t, ŷ
′i
t+1|t ∈ X̂ i

t such that

pt · yit+1|t + q̂t|t−1 · ŷit+1|t−1 = pt · y′it+1|t + q̂t|t−1 · ŷ′it+1|t−1, we have Ṽ i
t (p̂t, (q̂s|s−1)ts=1, ŷ

i
t+1|t) =

Ṽ i
t (p̂t, (q̂s|s−1)ts=1, ŷ

′i
t+1|t).

Proof: Recall that by (5.7) we have

F̃ i
t

(
p̂t, (q̂s|s−1)ts=1, ŷ

i
t+1|t

)
:=
{

(xit, x̂
i
t−1) ∈ X̂t

∣∣ x̂it−1 ∈ Ṽ i
t−1(p̂t−1, (q̂s|s−1)t−1

s=1, ŷ
i
t|t−1),

where (xit, ŷ
i
t|t−1) ∈ B̃t(pt, q̂t|t−1, ŷ

i
t+1|t)

}
.

By assumption we have pt · yit+1|t + q̂t|t−1 · ŷit+1|t−1 = pt · y′it+1|t + q̂t|t−1 · ŷ′it+1|t−1, which

implies that B̃t(pt, q̂t|t−1, ŷ
i
t+1|t) = B̃t(pt, q̂t|t−1, ŷ

′i
t+1|t), and so F̃ i

t (p̂t, (q̂s|s−1)ts=1, ŷ
i
t+1|t) =

F̃ i
t (p̂t, (q̂s|s−1)ts=1, ŷ

′i
t+1|t). Since Ṽ i

t (p̂t, (q̂s|s−1)ts=1, ŷ
i
t+1|t) and Ṽ i

t (p̂t, (q̂s|s−1)ts=1, ŷ
′i
t+1|t) con-

tain the �it-greatest elements of F̃ i
t (p̂t, (q̂s|s−1)ts=1, ŷ

i
t+1|t) and F̃ i

t (p̂t, (q̂s|s−1)ts=1, ŷ
′i
t+1|t) re-

spectively, they also must be equal. Q.E.D.

Lemma A.4 Let Assumption 1 be satisfied and {x̂∗T , (ŷ∗t|t−1)Tt=1, p̂
∗
T , (q̂

∗
t|t−1)Tt=1} be a se-

quential equilibrium. If x̂∗it ∈ Ṽ i
t (p̂∗t , (q̂

∗
s|s−1)ts=1, ŷ

∗i
t+1|t), then x̂∗it ∈ Ṽ i

t (p̂∗t , (q̂
∗
s|s−1)ts=1, x̂

∗i
t ).
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Proof: We prove the result by induction. Take t = 0, and x∗i0 ∈ Ṽ i
0 (p∗0, y

∗i
1|0). By by

local non-satiation of preferences induced by Assumption 1, we have p∗0 · x∗i0 = p∗0 · y∗i1|0,

which implies that B̃0(p∗0, y
∗i
1|0) = B̃0(p∗0, x

∗i
0 ). Therefore, Ṽ i

0 (p∗0, x
∗i
0 ) = Ṽ i

0 (p∗0, y
∗i
1|0) and

x∗i0 ∈ Ṽ i
0 (p∗0, x

∗i
0 ).

Next, take any t ∈ T and assume that x̂∗it−1 ∈ Ṽ i
t−1(p̂∗t−1, (q̂

∗
s|s−1)t−1

s=1, x̂
∗i
t−1). We show that

the same property holds at period t. By (5.7)

F̃ i
t

(
p̂∗t , (q̂

∗
s|s−1)ts=1, ŷ

∗i
t+1|t

)
:=
{

(xit, x̂
i
t−1) ∈ X̂t

∣∣ x̂it−1 ∈ Ṽ i
t−1(p̂∗t−1, (q̂

∗
s|s−1)t−1

s=1, ŷ
i
t|t−1),

where (xit, ŷ
i
t|t−1) ∈ B̃t(p

∗
t , q̂
∗
t|t−1, ŷ

∗i
t+1|t)

}
.

We begin by showing that x̂∗it ∈ B̃t(p
∗
t , q̂
∗
t|t−1, ŷ

∗i
t+1|t), with p∗t ·x∗it + q̂∗t|t−1 · x̂∗it−1 = p∗t ·y∗it+1|t+

q̂∗t|t−1 · ŷ∗it+1|t−1.

First, we argue that p∗t ·x∗it + q̂∗t|t−1 ·x̂∗it−1 ≥ p∗t ·y∗it+1|t+ q̂
∗
t|t−1 · ŷ∗it+1|t−1. Assume the opposite.

By Assumption 1, there exists some x′it ∈ Xt such that (x′it , x̂
∗i
t−1) ∈ B̃t(p

∗
t , q̂
∗
t|t−1, ŷ

∗i
t+1|t)

and (x′it , x̂
∗i
t−1) �it x̂∗it . Moreover, by assumption x̂∗it−1 ∈ Ṽ i

t−1(p̂∗t−1, (q̂
∗
s|s−1)t−1

s=1, x̂
∗i
t−1). Hence,

(x′it , x̂
∗i
t−1) ∈ F̃ i

t (p̂
∗
t , (q̂

∗
s|s−1)ts=1, ŷ

∗i
t+1|t), which contradicts that x̂∗it ∈ Ṽ i

t (p̂∗t , (q̂
∗
s|s−1)ts=1, ŷ

∗i
t+1|t).

Next we argue that p∗t · x∗it + q̂∗t|t−1 · x̂∗it−1 ≤ p∗t · y∗it+1|t + q̂∗t|t−1 · ŷ∗it+1|t−1. By the previous

argument we know that for all i ∈ I, p∗t · x∗it + q̂∗t|t−1 · x̂∗it−1 ≥ p∗t · y∗it+1|t + q̂∗t|t−1 · ŷ∗it+1|t−1.

Assume that for some i, we have p∗t · x∗it + q̂∗t|t−1 · x̂∗it−1 > p∗t · y∗it+1|t + q̂∗t|t−1 · ŷ∗it+1|t−1. Then,

p∗t ·
∑

i∈I x
∗i
t + q̂∗t|t−1 ·

∑
i∈I x̂

∗i
t−1 > p∗t ·

∑
i∈I y

∗i
t+1|t + q̂∗t|t−1 ·

∑
i∈I ŷ

∗i
t+1|t−1. However, by the

market clearing condition we have p∗t ·
∑

i∈I e
i
t + q̂∗t|t−1 ·

∑
i∈I ê

i
t−1 = p∗t ·

∑
i∈I x

∗i
t + q̂∗t|t−1 ·∑

i∈I x̂
∗i
t−1 > p∗t ·

∑
i∈I y

∗i
t+1|t + q̂∗t|t−1 ·

∑
i∈I ŷ

∗i
t+1|t−1 = p∗t ·

∑
i∈I e

i
t + q̂∗t|t−1 ·

∑
i∈I ê

i
t−1, which

yields contradiction.

By the above claim as well as Lemma A.3, we conclude that Ṽ i
t (p̂∗t , (q̂

∗
s|s−1)ts=1, x̂

∗i
t ) =

Ṽ i
t (p̂∗t , (q̂

∗
s|s−1)ts=1, ŷ

∗i
t+1|t). Hence, x̂∗it ∈ Ṽ i

t (p̂∗t , (q̂
∗
s|s−1)ts=1, x̂

∗i
t ). Q.E.D.

Proof of Proposition 6: Let {x̂∗T , (ŷ∗t|t−1)Tt=1, p̂
∗
T , (q̂

∗
t|t−1)Tt=1} be a sequential equilib-

rium. By Corollary 5, {x̂∗1, y∗1|0, p̂∗1, q∗1|0} constitutes a sequential equilibrium starting at

date 1, with (ŷ∗2|1)i∈I being the distribution of initial endowments. Hence, by Corollary 6

we have p∗0 · y∗i1|0 = p∗0 · x∗i0 .

Take any t ∈ T . First we show that q̂∗t|t−1 · ŷ∗it−1|t ≤ q̂∗t|t−1 · x̂∗it−1. Assume the opposite, i.e.

q̂∗t|t−1·x̂∗it−1 < q̂∗t|t−1·ŷ∗it|t−1. Then, p∗t ·x∗it +q̂∗t|t−1·x̂∗it−1 < p∗t ·x∗it +q̂∗t|t−1·ŷ∗it|t−1 ≤ p∗t ·y∗it+1|t+q̂
∗
t|t−1·

ŷ∗it+1|t−1. By Assumption 1, there exists a x′it ∈ Xt such that (x′it , x̂
∗i
t−1) ∈ B̃t(p

∗
t , q̂
∗
t|t−1, ŷ

∗i
t+1|t)

and (x′it , x̂
∗i
t−1) �it x̂∗it . By Lemma A.4, x̂∗it−1 ∈ Ṽ i

t−1(p̂∗t−1, (q̂
∗
s|s−1)t−1

s=1, x̂
∗i
t−1). Hence, we have

(x′it , x̂
∗i
t−1) ∈ F̃ i

t (p̂
∗
t , (q̂

∗
s|s−1)ts=1, ŷ

∗i
t+1|t), which contradicts that x̂∗it ∈ Ṽ i

t (p̂∗t , (q̂
∗
s|s−1)ts=1, ŷ

∗i
t+1|t).

Next, we show that q̂∗t|t−1 · ŷ∗it|t−1 ≥ q̂∗t|t−1 · x̂∗it−1. By the previous argument we have

q̂∗t|t−1 · ŷ∗it|t−1 ≤ q̂∗t|t−1 · x̂∗it−1 for all i. Assume that for some i we have q̂∗t|t−1 ·
∑

i∈I ŷ
∗i
t|t−1 <
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q̂∗t|t−1 · x̂∗it−1. Then q̂∗t|t−1 ·
∑

i∈I ŷ
∗i
t|t−1 < q̂∗t|t−1 ·

∑
i∈I x̂

∗i
t−1. However, by the market clearing

condition we have q̂∗t|t−1·
∑

i∈I ê
i
t−1 = q̂∗t|t−1·

∑
i∈I ŷ

∗i
t|t−1 < q̂∗t|t−1·

∑
i∈I x̂

∗i
t−1 = q̂∗t|t−1·

∑
i∈I ê

i
t−1.

Contradiction. Q.E.D.

Proof of Proposition 7: Let {x̂∗T , (ŷ∗t|t−1)Tt=1, p̂
∗
T , (q̂

∗
t|t−1)Tt=1} be a sequential equilib-

rium. Let ∀(i, t) ∈ I × T/{0}, ŷ′it|t−1 = x̂∗it−1. We show that {x̂∗T , (ŷ′t|t−1)Tt=1, p̂
∗
T , (q̂

∗
t|t−1)Tt=1}

is also a sequential equilibrium.

Clearly, the market clearing condition holds. Moreover, by Lemma A.4, ∀(i, t) ∈ I ×
T , x̂∗it ∈ Ṽ i

t (p̂∗t , (q̂
∗
s|s−1)ts=1, x̂

∗i
t ). On the other hand, by Proposition 6 we have x̂∗it ∈

B̃t(p
∗
t , q̂
∗
t|t−1, ŷ

∗i
t+1|t). The proof is complete. Q.E.D.

Lemma A.5 Let X = Rn
+, and y ∈ X be a non-zero vector. For any p, q ∈ Rn

++, where

p 6= q, define P (y) := {x ∈ X | p · x = p · y} and Q(y) := {x ∈ X | q · x = q · y} such that

for any x ∈ P (y), we have q · x ≥ q · y. Then x′ ∈ P (y) ∩Q(y) implies x′ ∈ ∂X.

Proof: Let x′ ∈ P (y)∩Q(y). Since p 6= q and for any x ∈ P (y) we have q ·x ≥ q ·y, there

exists a x′′ ∈ P (y) such that q ·x′′ > q ·y. As x′ ∈ Q(y), we have q ·x′′ > q ·x′. Assume that

x′ ∈ X/∂X. Then there exists α ∈ (0, 1) and x ∈ P (y) such that αx′′+(1−α)x = x′. Hence,

x = (1−α)−1(x′−αx′′). However, this implies that q ·x = (1−α)−1(q ·x′−αq ·x′′) < q ·y,

which yields contradiction since for any x ∈ P (y) we have q · x ≥ q · y. Q.E.D.

Proof of Proposition 8: Let {x̂∗T , (ŷ∗t|t−1)Tt=1, p̂
∗
T , (q̂

∗
t|t−1)Tt=1} be a sequential equilib-

rium. We prove the result by induction.

By Corollary 5, for any sequential equilibrium {x̂∗T , (ŷ∗t|t−1)Tt=1, p̂
∗
T , (q̂

∗
t|t−1)Tt=1}, tuple

{x̂∗1, y∗1|0, p̂∗1, q∗1|0} is a sequential equilibrium starting at date 1, given the initial distri-

bution of endowments (ŷ∗i2|1)i∈I . By Corollary 8, this implies that p∗0 = q∗1|0 (up to a

scalar).

Take any t ∈ T and assume that p̂∗t−1 = q̂∗t|t−1 (up to a scalar). We claim that this implies

p̂∗t = q̂∗t+1|t (up to a scalar). For any i ∈ I define sets P (x̂∗it ) := {x̂it ∈ X̂t | p̂∗t · x̂it = p̂∗t · x̂∗it }
and Q(x̂∗it ) := {x̂it ∈ X̂t | q̂∗t+1|t · x̂it = q̂∗t+1|t · x̂∗it }. By definition x̂∗it ∈ P (x̂∗it ) ∩Q(x̂∗it ).

First, we claim that for any x̂it ∈ P (x̂∗it ), we have q̂∗t+1|t · x̂it ≥ q̂∗t+1|t · x̂∗it . We prove

it by contradiction. Assume that there exists x̂it ∈ P (x̂∗it ) such that q̂∗t+1|t · x̂it < q̂∗t+1|t ·
x̂∗it . Assumption 1 and Proposition 6 imply that p∗t+1 · x∗it+1 + q̂∗t+1|t · x̂it < p∗t+1 · x∗it+1 +

q̂∗t+1|t · x̂∗it = p∗t+1 · x∗it+1 + q̂∗t+1|t · ŷ∗it+1|t. By Assumption 1 there exists a x′it+1 ∈ Xt+1

such that (x′it+1, x̂
i
t) ∈ B̃t+1(p∗t+1, q̂

∗
t+1|t, ŷ

∗i
t+2|t+1) and (x′it+1, x̂

∗i
t ) �it+1 x̂∗it+1. In addition,

since x̂it ∈ P (x̂∗it ) and p̂∗t−1 = q̂∗t|t−1, we have p∗t · xit + q̂∗t|t−1 · x̂it−1 = p̂∗t · x̂it = p̂∗t · x̂∗it =

p∗t ·x∗it + q̂∗t|t−1 · x̂∗it−1. By Lemmas A.3 and A.4, this implies that x̂∗it ∈ Ṽ i
t (p̂∗t , (q̂

∗
s|s−1)ts=1, x̂

i
t).
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Therefore, it must be that (x′it+1, x̂
∗i
t ) ∈ F̃ i

t+1(p̂∗t+1, (q̂
∗
s|s−1)t+1

s=1, ŷ
∗i
t+2|t+1), which contradicts

that x̂∗it+1 ∈ Ṽ i
t+1(p̂∗t+1, (q̂

∗
s|s−1)t+1

s=1, ŷ
∗i
t+2|t+1).

Next, assume that q̂∗t+1|t 6= p̂∗t (up to a scalar). By Lemma A.5 and the above claim,

this implies that P (x̂∗it ) ∩Q(x̂∗it ) ⊂ ∂X̂t. For all i ∈ I define νi = (p̂∗t · x̂∗it )/(p̂∗t ·
∑

i∈I ê
i
t),

and x̂iν = νi
∑

i∈I ê
i
t. By construction, ∀i ∈ I, we have x̂iν ∈ P (x̂∗it ). Moreover, the market

clearing condition implies
∑

i∈I ν
i = 1.

Since
∑

i∈I ê
i
t is strictly positive, whenever x̂∗it is non-zero it must be that x̂iν 6∈ P (x̂∗it )∩

Q(x̂∗it ). Hence, q̂∗t+1|t · x̂iν > q̂∗t+1|t · x̂∗it , as well as q̂∗t+1|t ·
∑

i∈I x̂
i
ν > q̂∗t+1|t ·

∑
i∈I x̂

∗i
t . This leads

to contradiction, since by construction q̂∗t+1|t ·
∑

i∈I ê
i
t = q̂∗t+1|t ·

∑
i∈I x̂

i
ν > q̂∗t+1|t ·

∑
i∈I x̂

∗i
t =

q̂∗t+1|t ·
∑

i∈I ê
i
t. Q.E.D.
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