
 
 

 

Decision, Risk & Operations  
Working Papers Series 

 

 

Small Modular Infrastructure 
 
E. Dahlgren, K.S. Lackner, C. Gocmen, G. van Ryzin 
 
July 2012 
DRO-2012-03 
 



Small Modular Infrastructure

Eric Dahlgren Klaus S. Lackner
School of Engineering and Applied Science, Columbia University
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Abstract

In many basic infrastructure industries – transportation, electric power generation, raw material
processing, etc. – we have witnessed a trend of ever increasing unit size of technology. Several
factors have driven this trend. Basic geometry – how length, area and volume scale with size –
often (but not always) imply lower capital costs per unit capacity and higher conversion efficiency
as one increases unit size. Reducing labor cost also drives increases in unit scale. Yet advances in
automation and communication technology together with a more comprehensive cost-benefit analysis
argue for a potential reversal of this “bigger is better” trend – a radical shift to a world in which
efficiency of size is replaced by efficiency of numbers, in which custom built technology of massive unit
scale is replaced by massive numbers of small, modular, mass-produced units deployed in parallel in
single locations or distributed geographically. To make this argument, we first develop a framework
to evaluate the economics of unit scale. What factors drive the decision to build big or small? And
how is technology altering this choice? What kind of flexibility benefits can one obtain from small
unit size? We then apply the framework to several industry sectors and argue that under plausible
assumptions, many industries are nearing – or already are at – a tipping point towards radically
smaller unit scale. Such a transformation would have profound implications for the structure of both
established and emerging industries.

1 Why build big?

In a wide range of industries, the historical trend is toward ever increasing unit size of technology.1

Our food, once produced on small family plots, now comes overwhelmingly from large industrial
factory farms. Ships that in the early twentieth century carried 2,000 tons of cargo have been
replaced by modern container ships that routinely move 150,000 tons. Coal-fired power plants that
averaged 50 MW of output in 1950 today approach 1 GW. The list goes on. For example, Figure
1 depicts the evolution of total installed capacity together with average generator sizes of several
different electricity generating technologies in the US2. The data suggest that growth in a certain
generation technology is accompanied by increasing unit sizes.

What underlies the trend of “bigger is better?” Before exploring this question further, we need to
distinguish between the traditional notion of economies of scale, which encompasses all possible ben-
efits that are associated with increasing total firm-wide output, and those benefits that are directly

1By unit size we mean the capacity of a single unit of technology, e.g., the number of people carried by a single aircraft,
the MFLOPS of a single CPU, the watts of electric power produced by a single generator, etc.

2The explanation for the stagnation in natural gas-derived capacity in the late 70s is the enactment of “The Power-
plant[sic] and Industrial Fuel Use Act”, by U.S. Congress in 1978, effectively banning new construction of natural gas-fired
power plants [65]. This act was repealed in 1987. The data include all generators with a nameplate capacity greater than
1 MW, meaning that once the growth stagnates in a technology small, niche installations are still built, which explains the
apparent decrease in average unit sizes in coal and hydro power.
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Figure 1: The graphs show the average capacity (left axis, ‘y’) of electricity generators installed in the US
and the total capacity (right axis, ‘z’) of the same technology over time [29]. Together, these technologies
represent more than 90% of total generating capacity (1.1TW) in the US in 2009. ’Natural gas (gas
turbine)’ includes both stand-alone gas turbines and gas turbines in a combined cycle setting, similarly
for ’Natural gas (steam turbine).’

attributed to building and operating larger individual units. Realizing that many of the benefits aris-
ing from economies of scale are actually independent of the sizes of the individual units of production,
e.g. spreading out fixed overhead costs, we are here interested in those that do depend on unit size.
We refer to these unit-size dependent benefits as economies of unit scale.
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Conventional wisdom in cost engineering holds that capital costs per unit of capacity decline with
increasing unit size. This empirical observation can be attributed to several different factors. Cost
efficiencies arise from spreading out the fixed-cost components of a system, like control and monitoring
subsystems, which must be included in a unit’s design regardless of unit size. Furthermore, the costs
incurred during the design phase are, to a first approximation, independent of the size of the unit.
Lastly, it is commonly believed that the material required, and thereby also the cost of constructing
a unit scales like the ratio of surface area to enclosed volume, which would lead to decreasing cost
per unit output as size increases (see §3.1.1).

Another key driver of large unit scale is operating labor. In general, fixed quantities of labor
are required to operate and maintain each unit, and hence, the total labor required to produce
a given amount of output declines with the number of units used to produce that output. For
example, a fleet of 100 10 tons dump trucks for hauling iron ore requires more labor (drivers) than
a fleet of 10 100 tons dump trucks. Likewise (though less obviously) a power plant comprising 100
1 MW generators generally requires more labor than a plant consisting of only one 100 MW generator.
Therefore, increasing unit size leads to increased labor productivity and consequently lowers operating
costs per unit output.

A further motivation for increasing unit size is conversion efficiency. These efficiencies are again
due in large part to geometric scaling laws. Take thermal power generation, in which chemical or
nuclear energy is transformed into heat. Considering any contained part of the thermal cycle in a
power plant (e.g. the boiler or a segment of the working fluid) the capacity is related to heat content,
which approximately scales with volume, and dissipative heat losses scale with the surface area. In
this way, larger unit size leads to lower dissipative losses and hence higher conversion efficiency.

Lastly, larger units by their very nature create centralized points of production, which can act
to bring down fixed operating costs per unit produced. These include such costs as security, admin-
istration, and the transport infrastructure needed to acquire raw materials and distribute outputs,
such as shipping docks, pipelines and railroad tracks.

The issue of how economies of unit scale can reduce capital and operating costs has been analyzed
in the economics and engineering literature; see for example [38, 40, 52, 54, 43], and [68].

1.1 The case for small

While this development of ever larger unit size may have made sense historically, we submit that the
incentives today for continuing the trend are less compelling - and indeed there may be tremendous
benefit in reversing it. It is now realistic to consider a radically new approach to infrastructure design,
one that replaces economies of unit scale with economies of numbers, that phases out custom-built,
large-scale installations and replaces them with large numbers of mass-produced, modular, small-unit-
scale technology – operated in either centralized or distributed fashion – offering new possibilities for
reducing cost and improving service. In the context of electricity generation, some of these concepts
are presented in the “small is profitable” work of Lovins [55], but the idea applies much more broadly.
Indeed, we are already seeing such massively parallel infrastructure strategies emerging in nascent
form in several industrial sectors (see §2) and, in our assessment, many other sectors are ripe for
similar change (see §5).

This shift mirrors a similar revolution that began thirty years ago in the computer industry.
The traditional approach to achieving high capacity and increased speed in computing was to build
increasingly powerful, specialized machines with greater and greater processing power. This trend,
however, came to a dramatic halt in the mid-1990s. At this point, it became cheaper to employ mass-
produced CPUs and high capacity memory from the burgeoning personal computer and workstation
industry. Large numbers of small-scale CPUs could achieve high computing capacity without relying
on ever-more-powerful single-processor machines [71].

Like supercomputers in the 1990s, we believe that many basic infrastructure industries are near
or at a tipping point from large to small optimal unit scale. And three driving forces underlie this
technological shift.

First, technologies for automating processes exist today that were previously unavailable. In
the past, a massively parallel modular plant was simply infeasible because of excessive personnel
cost. In contrast, current computing, sensor and communication technologies make high degrees of
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automation possible at very low cost. The result is a radical undercutting of the logic that significant
labor savings can only be obtained through large unit scale.

Second, as we argue below, mass production of many small standardized units can achieve capital
cost saving comparable to, or even larger than those achievable through large unit scale. For instance,
a mass produced car engine costs $10/kW, while a typical large-scale coal-fired power plant costs
about $1000/kW [51]. While this possibility is hardly“new,”by chasing unit scale so relentlessly, many
infrastructure industries have simply missed out on the cost-reducing potential of mass producing
capital. Moreover, since operating labor cost alone rendered small unit scale technology uneconomical
in the past, there was little incentive to pursue the possibility of mass-produced capital. Today, that
situation is fundamentally altered.

Lastly, there are many inherent flexibility benefits to small unit scale technology which, in the
past, have largely been ignored in the race toward ever increasing scale. Small-scale units can be
used in multiples to better match the output requirements of a given project and can also be de-
ployed gradually over time, both of which reduce investment cost and risk. They also offer geographic
flexibility; multiple small units can be aggregated at a single location to achieve economies of cen-
tralization (e.g. to reduce overhead or transport costs) or they can be distributed to be closer to
either sources of supply or points of demand. An additional benefit of small unit scale is flexibility in
terms of operating output; having many units of small scale makes it possible to selectively operate
varying numbers of units to better match short-run variations in demand. Also, with small unit scale
technology, one can achieve high reliability through enormous redundancy and statistical economies
of numbers.

1.2 Overview

To further explore the possibilities of small modular infrastructure, one must look at existing small-
scale modular technologies, the determinants of economies of scale, the impact of learning curves on
capital costs and the effect of unit size on operating costs. It is also important to account for the
many flexibility and diversification advantages of small modular units. Toward this end, in §2 we
look at existing examples of small modular technology. §3 then provides theory on how economies of
unit scale and learning affect capital costs, and there we discuss the effect of unit size on operating
costs. §4 looks at the flexibility advantages that come with employing small modular units, such as
investment flexibility and diversification. Afterwards, in §5 we give examples of several technologies
where the trend of ever increasing size has been observed but which have the potential to benefit
from smaller unit scale. Lastly, §6 concludes with some general observations about how we can make
the transition to “thinking small”.

2 Existing industry examples

Before analyzing the case for small unit scale in more depth, it is helpful to consider some current
industry examples. Small, modular nuclear reactors, chlorine plants, and biomass gasification systems
are technologies that are either already commercially available or currently under development, and
importantly, these technologies have taken advantage of small unit scale and the economies of mass
manufacturing. The specific technologies are very different, and they face different impediments
to a large unit scale; regulatory hurdles for nuclear power, safety hazards for the production and
transportation of chlorine and the distributed nature of the inputs for biomass gasification. In each
case, these reasons were enough to tip the scales in favor of a smaller unit scale. However, regardless
of the technology, the execution of the new strategy is similar: mass produce and automate.

2.1 Small modular reactors (SMRs)

Small-scale applications of nuclear power may seem counter-intuitive, but there is now growing inter-
est in a new generation of small, modular nuclear reactors (SMRs). Unlike existing generators which
have an average capacity close to 1 GWe, SMRs have a capacity as small as 25 MWe [8, 18]. Because
of their small unit scale, reactors can be manufactured off-site and transported to the power plant
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location semi- or fully-constructed; some are even small enough to be transported by truck. As a
result, the time required to bring a new plant on line – one of the biggest obstacles inhibiting the
adoption of nuclear power – is shortened from an average of twelve to less than five years [46, 26].
Along with long lead time, high capital costs have been a major impediment to building nuclear power
plants, with a typical large-scale nuclear power plant requiring a minimum investment of around $12
billion in capital [76]. With SMRs, the upfront capital cost can be as low as $100 million. Moreover,
investors can easily expand a plant in the future depending on market conditions [12]. Scalability
of SMRs also makes nuclear power attractive for smaller projects, thereby increasing the market for
such technology. For example, SMRs can be used as “drop-in replacements” in aging power plants
since they can utilize the existing transmission capacity or in remote applications like mining and oil
and gas production where dependable baseload power is crucial [12, 2].

While SMRs can be thought of as scaled down versions of classical reactors, they share a common
set of design characteristics which make them safer than classical reactors [49]. Consequently, safety
and support systems are less complex. In addition, due to their modularity, major maintenance tasks
can be handled by shipping the entire reactor unit back to the factory. These factors can reduce
the on-site staff size by a factor of five, per unit of power output, compared to traditional nuclear
power plants [46]. Another operational advantage of SMRs is the reduced impact of maintenance
down-time. Current nuclear power plants typically have one or two reactors, so during maintenance
they lose most, if not all, of their generating capacity. With SMRs, a typical power plant would
have 4-12 reactors, so if one reactor is taken off-line for maintenance, the impact on total generation
capacity is much less [46].

There are numerous small modular reactors being designed around the world. Examples include
Toshiba’s 4S, Babcok & Wilcox’s mPower, Hyperion’s HPM, and Rosatom’s KLT-40. Currently, most
of the designs are being approved, and the first SMR plant is expected to be operational by 2018 [67].
There are also plans to use SMRs in unconventional settings. For example, Rosatom, a Russian state
corporation in charge of the nuclear complex, has ordered the construction of several floating nuclear
power stations. The first, Akademik Lomosonov, was launched in 2010 and is expected to become
operational by 2012 [70]. Another example is the small offshore reactor Flexblue developed by DCNS,
a French Naval shipyard company. The first prototype is scheduled for 2013 and is planned to enter
commercial production by 2016 [14].

Nascent SMRs provide a sense of how a radically smaller unit scale can fundamentally disrupt
an industry accustomed to a massive scale. Their designs are simplified and standardized; they are
manufactured in the factory and not in the field; investment is significantly more flexible and less
risky; and their small size opens up entirely new domains of applications for nuclear power. All these
are key advantages of the small modular approach to technology.

2.2 Small modular chlorine plants

Chlorine is a chemical element used widely for the production of industrial and consumer products,
disinfection and water purification. Being highly toxic, chlorine is dangerous and costly to store and
transport. For example, in a highly publicized train crash in 2005 in Graniteville, South Carolina,
rail tank cars carrying chlorine ruptured resulting in the death of nine people and the evacuation
of thousands of residents [24]. To avoid the costs and risks associated with chlorine storage and
transportation, companies such as GE, MIOX and AkzoNobel have come up with designs for small
skid-mounted modular chlorine plants which can be placed close to sources of demand. Manufac-
turing these modular plants off-site reduces on-site construction requirements, shortening the time
needed to bring a plant online. Modular design also enables efficient inspection and maintenance,
reducing operational costs. All designs are highly automated, which decreases the requirement for
on-site skilled personnel. Moreover, AkzoNobel’s design aims to completely eliminate on-site person-
nel requirement by controlling the facilities remotely, thus realizing the scale benefits of traditional
chlorine plants by providing centralized monitoring and control.

The idea for small modular chlorine plants has been around for some time. GE’s Cloromat has
been in commercial use for over 35 years and, MIOX has been producing its own line of plants since
1994 [3, 5]. AkzoNobel’s solution is quite new, with the first plant targeted to come online in 2012
[7, 17].
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Again, this trend of small modular chlorine plants hints at what is possible more broadly with
a strategy of small unit scale. Production is distributed and located close to points of demand,
eliminating the need for transportation. Plant designs are standardized and mass produced to reduce
capital costs. And on-site labor is minimized - or even eliminated - by utilizing advanced sensing,
automation and communications technology that enable remote control of plant operations. The
overall approach achieves many of the capital and labor savings of large unit scale yet provides
benefits, such as distributed operation, that can only be achieved with small plants.

2.3 Small modular biomass gasification systems

Biomass, e.g. wood and agricultural waste, is a widely available renewable energy source that can
be used to produce electricity and heat through gasification. Being abundant, biomass is a good
candidate for use in distributed electricity production and accounts for approximately 1-2% of U.S.
electricity production [11].

Several companies such as AESI, Community Power Corporation(CPC) and Innovative Energy
Inc.(IEI) have commercially available designs for small modular gasification devices. These devices
convert biomass into synthesis gas to generate electricity and heat. AESI’s and CPC’s units have
capacities in the range of 50-100 kWe and IEI produces standard 1-2 MWe units [9, 6, 4]. As
a consequence of their small size, AESI and CPC ship their systems housed in a small number of
shipping containers which are connected to each other on-site. This modular approach allows for easy
integration and shortens the time required to get a system operational. IEI’s system is larger, and it is
also brought to the site semi-manufactured where it is connected to existing units and infrastructure.
All designs are highly automated and CPC’s design allows its equipment to be controlled remotely
from a central location over the internet.

Like modular chlorine plants, small modular biomass gasification systems have already been de-
ployed in numerous projects. IEI is constructing a 5 MWe waste-to-energy power plant in Missouri,
and AESI has deployed its system at a pharmaceutical plant in North Carolina [27, 72]. CPC lists
numerous institutions, such as Kedco, Shell Solar, Idaho Power Corporation and Western Regional
Biopower Energy Program, as its customers [1].

Again, this example of small modular biomass plants illustrates a broader strategy of combining
mass manufacturing and highly automated operations to enable small unit scale plants to achieve
economies of capital and operating costs comparable to their larger brethren, while creating en-
tirely new benefits such as short lead times and distributed operation only achievable by small scale
technology.

2.4 Other Examples

Other existing examples of small modular technologies include, supercomputers, data centers, and
small steel mills. One of the most prominent examples of supercomputers that use small modular
units is the Condor Cluster, which is owned by the U.S. Air Force and makes use of off-the-shelf
Playstation 3 gaming consoles. By employing this mass produced computing equipment the Air
Force was able to reduce capital costs more than 20 times [81].

Data centers are another important setting where we can observe small modular technology. With
the widespread use of Internet, the need to house data in centralized locations became important.
Data centers achieve this task by using standardized modular equipment in parallel. This allows
them to efficiently scale up or down depending on market conditions.

Lastly, this trend can be seen in steel production. A traditional integrated steel mill makes steel
from iron ore using a blast furnace. By using much smaller steel mills, which employ electric furnaces,
it is possible to produce steel from scrap metal at a much lower cost. These so called mini-mills are
more efficient in processing scrap metal then conventional large steel mills, and are also less costly to
start and stop which enables them to manufacture steel in small batches.
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3 A theory of unit scale

We next lay out a theory that explains the fundamental factors that drive the choice of unit size,
and how they are changing due to advances in technology and the shifting demands of the global
marketplace. We argue that there can be significant advantages to radical changes in unit scale, but
in order to do so, one must fully understand the motivation for large-scale units.

3.1 Capital costs

Given a prototype unit of known cost, one can follow two different strategies in order to produce
output that greatly exceeds that of the prototype. One option is to create a single large unit of
sufficient capacity; in effect, simply scaling up the size of the prototype. The other option is to
provide a large number of standardized units that aggregate to produce the total desired output.
Such a massively parallel production strategy is possible as long as there is no significant cost to
combining the separate outputs into a single stream.

Capital cost, regardless of strategy, is an important determinant of the economic viability of
any project. The literature on cost engineering offers empirical relations between the cost of the
required equipment and the production capacity of the system for both strategies. In this section,
we compare these costs and conclude that, based on established empirical relationships, the cost
per unit of capacity approximately scales the same in both cases. Hence, we argue that capital
cost considerations are not likely to determine the optimal size of the production equipment. In the
following, we will refer to the cost reductions achievable in the two cases as the economies of unit
scale and economies of mass production, respectively.

3.1.1 Economies of unit scale

A traditional method of estimating the cost k of a piece of equipment with capacity c uses a power
law:

k(c) = k(c0)

(
c

c0

)α
, (1)

where k(c0) is the cost of a reference unit of capacity c0. If the exponent is less than unity (α < 1),
the cost per unit size is decreasing, (d(k(c)/c)/dc < 0), creating an impetus for building larger units.
Numerical values for α have been estimated for a wide array of process equipment. Typically these
range from 0.6 to 0.8 [40, 44, 32], hence the so-called “0.7 rule”, or sometimes “two-thirds rule.” It is
worth noting here that there are practical limitations to how large one can build working structures,
since the structural integrity of materials becomes a factor for very large sizes. Consequently, pushing
the boundaries on the large end of the spectrum has normally been accompanied by development in
materials that are lighter and stronger, as for example in the use of carbon fibers in wind turbine
construction. (See [52].)

The observed decline in cost with increasing unit size of a piece of equipment can be attributed
to several factors mentioned above. However, a frequently cited argument for the appearance of the
scaling law in (1), with values of the exponent α ranging from 0.6 to 0.8, is based on the geometric
relationship between surface area and volume [37, 41, 74, 59]. This argument suggests that costs scale
with the amount of material used in the structure, which in turn is supposed to scale with the surface
area. Often when considering a piece of industrial equipment like a pressure vessel, a chemical reactor
or a truck bed, it is reasonable to assume that its capacity is proportional to its useful volume. If
both assumptions apply, scaling the capacity with a factor λ results in costs scaling as λ2/3. This
offers a nice explanation for the often-observed value of α ≈ 2/3 in (1).

However, from the perspective of structural mechanics, this argument is flawed. In most situations,
as the volume of a structure is increased, it is necessary to increase the wall thickness as well in order
to preserve structural integrity. As a result, the mass of an optimally designed unit typically increases
far more rapidly than the 2/3 power of the enclosed volume. Indeed, in any situation in which the
weight of the structure matters, it is usually not even possible to achieve symmetric scaling, i.e.,
a scaling of the structure in which all linear dimensions increase by the same scaling factor, λ1/3.
Instead, wall thicknesses or diameters of structural members grow faster than the linear size of the
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system. Therefore, the mass of the unit, or the amount of material in the walls of the unit, and
thereby also costs, would scale faster than the capacity of the system.

In living systems, the break-down of symmetric scaling can be found by comparing a mouse to
an elephant, where the latter has to have disproportionately thicker legs to support its weight; the
same concept holds for industrial objects. A structure operating at its mechanical capacity (with
appropriate safety factors) cannot be uniformly scaled up. The weight of the larger structure would
exceed the limits of its structural integrity. The way around this problem is to use lighter materials,
stronger materials or a combination of the two. Typically, these materials are not used at smaller
scales because they are more expensive. However, even with the most advanced materials, physics
imposes a boundary which can only be pushed so far. Appendix §A provides a detailed mathematical
analysis of the scaling of solid structures.

While we do not challenge the observed empirical relationship between cost and unit size, we
submit that the conventional explanation, which suggests that the wall area to volume ratio drives
scaling behavior, is overly simplistic and under more careful analysis proves incorrect. Quite the
contrary, we argue in the appendix that structural relationships tend to reduce cost advantages
of larger units, and, if they were to dominate, the overall cost structure would in fact result in
diseconomies of unit scale.

3.1.2 Economies of mass production

The economies of mass production was first investigated by Wright [80] in the context of airplane
production. The seminal work by Arrow [20] provided the first general analysis of the subject in
which he argues that costs of manufactured goods decline with the cumulative number produced.
There have since been various studies resulting in ample data on the cost reduction as the cumulative
production grows (see e.g. [19, 33, 58, 75]).

It is no surprise that costs decline as cumulative output increases. First, efficiencies improve
dramatically due to both specialization and improved product design. For example, when organizing
a production process to manufacture a large number of identical units, one can justify high degrees
of specialization in tools, layout and job design that can dramatically reduce per-unit manufacturing
costs. Also, in high-volume manufacturing, it becomes justifiable to invest significantly in product
design in order to make parts and subsystems more integrated, easier to assemble and hence less
costly to make (design for manufacturing).

The second benefit of producing in volume is learning. As a manufacturer gains cumulative
experience producing a given product via a certain process, myriad improvements in design, materials
and production methods are uncovered. Such a process of continuous improvement can lead to
significant cost reductions as production volumes increase. Conversely, cost reductions attributed to
learning can reverse themselves given extended breaks in production. This trend, akin to a“forgetting
curve”, can explain the relatively small cost reductions over time for larger and more long-lived
installations. Importantly, installations endowed with greater longevity also tend to be custom-made
rather than mass-produced which further contributes to the comparably small reductions in cost from
one investment to the next [58].

The effect of declining cost with the number of units produced is commonly formulated using
learning curves, which state that the unit cost decreases by a fraction ε < 1 as the cumulative
production doubles. That is, the cost, k2n, of the 2n-th unit is a fraction ε < 1 of the cost, kn, of the
n-th unit, or

k2n
kn

= ε. (2)

Sometimes this cost reduction is expressed by the learning rate, defined by 1 − ε. Based on (2), a
continuous approximation of kn can be formulated as

kn = k1ε
log2 n = k1n

log2 ε,

where k1 is the cost of the first unit produced. The aggregated cost, K(N), of N mass-produced
units following the given learning curve, can then be expressed as

K(N) =

∫ N

1

kndn =
k1

1 + log2 ε
N log2 ε+1. (3)

8



Small Modular Infrastructure

We note that even though this reduction in cost is referred to generally as a “learning rate”, we do not
wish to imply that learning is the only contributor to this form of cost reduction; the aforementioned
economies of specialization also play a key role.

3.1.3 Comparing economies of unit scale with economies of mass production

The expressions in (1) and (3) offer cost estimates of the distinctly different strategies of producing
systems of large total capacity. To compare the two, we consider the options of either scaling up a
reference unit of capacity c0 and cost k0 by a factor N (economies of unit scale) or manufacturing
N copies of the same reference unit (economies of mass production). Either way, the end result is a
system of total capacity Nc0. The two cost estimates yield

k(Nc0) = k(c0)

(
Nc0
c0

)α
= k(c0)Nα, (Economies of unit scale), (4)

K(N) =
k1

1 + log2 ε
N log2 ε+1, (Economies of mass production). (5)

A statistical analysis performed in [33], based on a sample of 22 different mass-production-oriented
industrial sectors found an average learning rate of 19% (1− ε = 0.19), which corresponds to a value
of the exponent in (5) of 0.7, i.e. log2 ε + 1 = 0.7. Since typical values for the exponent α in (4)
range between 0.6 to 0.8 it is reasonable to conclude that log2 ε+ 1 ≈ α and hence, the reductions in
production costs ensuing from economies of mass production are on par with those from economies
of unit scale.

It should be noted that this comparison assumes that the total installed capacity is independent
of the choice of unit size. This would be true, for example, in building a single factory. However,
smaller unit sizes can open up new domains of application for a given technology, and hence increase
the overall market size for that technology. This, in turn, can further reduce cost per unit capacity.
For example, as noted in §2.1 current sizes of nuclear reactors make them infeasible for a wide range
of applications. With the introduction of SMRs, nuclear energy may become a viable option for much
smaller projects.

3.2 Operating costs

As noted previously, high conversion and labor efficiencies are traditional benefits of large unit scale
production. However, the degrees in which these factors affect cost are changing dramatically with
recent advances in technology. Given these developments, one must take a closer look at the benefits
of scale and how technology can capture these benefits without resorting to large scales.

3.2.1 Labor efficiency

The labor required to operate a given process can roughly be divided into variable and fixed labor.
Variable labor scales with total output whereas fixed labor scales with the number of individual units
employed in the process, e.g., machine operators and maintenance personnel. For purely illustrative
purposes, the labor force on a commercial airliner, slightly simplified as flight attendants (variable
labor) and pilots (fixed labor), can serve to clarify the distinction. Within reasonable limits, the
number of pilots required on an aircraft is independent of the unit scale (number of passengers that
can be carried), whereas the number of required flight attendants depends on the number of passengers
carried. The distinction in types of labor is usually less clear-cut than in this simple example, but
the definition is nonetheless useful.

Processes where fixed labor cost is a significant component of total cost indicate the potential for
increasing labor productivity by scaling up individual unit sizes. Arguably, this has been a common
trait in many energy and materials processing industries in the past century, thereby driving, at
least in part, the trend of ever increasing unit size. A notable example can be found in the mining
industry and its pursuit of ever-larger unit sizes in extracting equipment, as detailed in §5.3. However,
such a strategy for increasing labor productivity will eventually run into physical barriers that are
progressively harder to surmount.
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An alternative strategy to reduce labor cost is to employ automation which can ultimately drive
labor cost to zero, or at least decouple it from the number of individual units employed. Naturally,
every process has its own characteristics and its amenability to automation needs to be evaluated
on a case-by-case basis. However, the progress made in wireless communication, GPS technology,
sensor technologies and computational processing power is fundamentally changing the economics of
automation; the capabilities of these technologies are soaring while costs are plummeting, enabling
unprecedented degrees of low-cost automation.

To be specific, Nordhaus [60] reports that the average price of computing power decreased by
more than 40% per year between the years 1990-2002. The communication sector has also seen
significant advances. International Telecommunication Union (ICT) reports that the average price
for a high-speed Internet connection dropped by 52% in the world between the years 2008-2010,
and Akamai reports that average global peak connection speed increased by 67% between 2010-2011
[15, 47]. The result is that automation and remote sensing and control technologies now provide
tremendous capability at very low cost.

Several well-known instances where such automation has flourished are electronic toll collection,
automated warehouses and electronic check-ins for flights. In several instances, such as with ATMs
and car-sharing services such as Zipcar, automation has changed industry dynamics by making it
possible to serve areas and markets which were previously too costly. While automation does not
eliminate all the benefits of increasing unit scale, given the current state of technology, automation is
often much cheaper than employing human workers, and this reduces the benefits of large unit scale
significantly.

Two other strategies to decouple the labor cost from unit scale and the geographical proximity
of units are remote operation and centralized maintenance. With appropriate instrumentation and
automation technologies linked to the Internet, a central control center can monitor and operate
units remotely, eliminating the need to have on-site personnel at every location and increasing uti-
lization of operators due to pooling economies. As a result, labor costs become independent of the
physical proximity of the units, and there is less incentive to keep units together geographically.
Similarly, small units requiring maintenance can be shipped back to the manufacturer or to a lo-
cal maintenance center for major repairs and upgrades. Again, this eliminates the need for a local
maintenance staff and also creates pooling economies in maintenance and repair labor. The exam-
ples of SMRs and modular chlorine plants described in §2 illustrate these ideas in practice. When
combined with automation technology, remote operation and centralized maintenance enable small
unit scale technology to achieve the levels of fixed and variable labor cost previously obtainable only
by centralization and massive unit scale.

3.2.2 Conversion efficiency

Conversion efficiency is the ratio of inputs to outputs, for example how much energy or raw material is
required to produce a unit of output. The same geometrical ratios that favor larger unit scales in terms
of material costs often imply high conversion efficiency too, such as the reduction of thermal losses
from working fluids discussed previously. In a similar way, geometry also influences the efficiency
in turbines and compressors where the main frictional losses occur along the spinning structure’s
circumference and the circumference scales linearly with the size of the turbine while the power
output scales proportionally to the spinning structure’s area, which grows like the square of the
size. Hence, the output power grows faster with increasing size than the majority of frictional losses.
Other scaling efficiencies arise from wasted materials in batch production processes of compounds
(specialty chemicals, pharmaceuticals, cosmetics, etc.), since residue waste tends to grow like the area
of a vessel, while the output capacity grows like the vessel’s volume. So again, larger unit scale tends
to improve conversion efficiency of these processes.

While one cannot disregard these geometrical arguments for conversion efficiency due to large
unit scale, these arguments provide only a guideline and need to be evaluated on a case-by-case
basis. For example, thermal power generation, previously discussed as a case for increasing unit
size, does indeed seem to favor a larger size when considering constant operation. However, it is
less clear how significant these size-dependent conversion efficiencies are in practical operation, e.g.
a car engine operated under optimal conditions can exhibit conversion efficiencies in the range 30-
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35% which is similar to those of large single-cycle power plants [78]. Another such example is water
desalination using reverse osmosis explained in §5.2. Small-scale desalination systems intended to
provide fresh water onboard recreational sailboats exhibit specific power consumption on par with
modern utility-scale plants. Moreover, conversion efficiencies are primarily important when inputs
are costly, such as fossil fuels or other purchased feed stocks. When inputs are sourced from the
ambient environment, and hence effectively “free”, as is the case for example with renewable energy
technologies, the importance of efficiencies is greatly reduced.

In summary, conversion efficiency clearly plays a role in deciding between large and small scale unit
production. However, one must take into account the variation exhibited under suboptimal operating
conditions and the cost of the input sources rather than relying simply on accepted doctrine.

4 Flexibility and diversification

In addition to merely countering the arguments that traditionally have supported ever increasing
physical size of capital equipment based on capital and operating costs, there are inherent flexibility
and diversification benefits that can be attained only at a smaller unit scale. A careful examination
of these benefits shows that they can be highly significant and easily tip the scale in favor of small
unit scale.

4.1 Locational flexibility

Unlike large unit scale technologies, small unit scale offers the option of either centralization or
decentralization. Multiple units can be aggregated at a single location to achieve economies of
centralization in, for example, pooling the risk of demand variation. Alternatively, units can be
distributed closer to either sources of supply or points of demand and thereby reduce transport or
transmission costs of either in- or out-bound goods. This trade-off is different when the source of
inputs are themselves localized (e.g. coal mines) versus ambient (e.g. wind and sunlight) or when
demand is centralized versus distributed.

The following simple model illustrates how decentralization is affected by the scale of the produc-
tion unit. Consider the case of a firm that produces a good with a demand uniformly distributed
throughout a large service area. This means that the size of a production facility is proportional to
the area that it serves and hence, the capital cost of the plant can be seen as a function of this area.
Another area-dependent cost is the transportation cost of the output from the plant to the point of
consumption. In this example, all other costs per unit output produced are assumed to have little or
no dependence on the area served by a single facility, and therefore, they need not be considered in
an optimization of the service area of a single plant. The question facing the firm is how large the
individual production facility should be, or equivalently, how large of an area, A, each facility should
serve. In this context, the firm’s goal is to minimize the area-dependent cost per unit output, K(A),
where

K(A) = KT (A) +KC(A), (6)

and where KC(A) and KT (A) represent the costs per unit delivered that can be attributed to capital
expenditure and transportation respectively.

The transport cost per unit of output, KT (A), is a function of the shipping distance and the
rate of transport. In transporting outputs over larger distances a firm is able to take advantage of
economies of scale and thus, the cost of transport per unit of output will typically grow less than
linearly in the shipping distance. On the other hand, it is usually reasonable to assume that the cost
of shipping a unit does not decrease with increasing shipping distance. Assuming that KT (A) follows
a power law,

KT (A) = KT (A0)

(
A

A0

)β
, (7)

then these arguments about scaling with distance imply 0 < β ≤ 1
2
. (See, e.g. [50].) The multiplier

KT (A0) represents the unit shipping cost for a service area A0.
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When considering only one individual unit we can use the capital cost estimate stemming from
economies of unit scale, discussed in section 3.1.1. Denoting the uniform demand density by D, the
size of a unit serving an area, A, is then DA, and from (1) we estimate the cost of the plant, k(DA),
using a power law,

k(DA) = k(DA0)

(
DA

DA0

)α
.

We can relate this expression of the capital cost of the plant to the capital cost per unit output
produced, KC , through

KC(A) = η
k(DA)

DA
= KC(A0)

(
A

A0

)α−1

, (8)

where the proportionality constant, η, contains the conversion from the capital cost of the plant to
the contribution to a single unit of output. This proportionality constant involves many parameters
including the lifetime of the plant. For typical values of α (between 0.6 and 0.8), the function KC(A)
in (8) is decreasing in the area, A, which is to be expected from the economies of unit scale. Combined
with the transportation cost per unit of output, KT (A), which typically is an increasing function of
the area served, the total area-dependent cost, K(A), in (6) is convex with an optimal area giving
the minimum cost. Furthermore, for a small enough area the cost K(A) is dominated by capital cost
and conversely, for large areas K(A) is dominated by transportation cost. As shown in appendix §B,
analyzing the assumed convex function, K(A), reveals some non-trivial conclusions. For example,
the simple heuristic of sizing the plant such that the capital cost equals the transportation cost will
give a total area-dependent cost at worst a factor 2 greater than at the optimum area.

Instead of considering the costs associated with a single plant we can alternatively consider the
costs associated with servicing a given area, Atotal. Now we can include the possibility of having many
small plants, each servicing an area A, which together serve Atotal. That is, we have N = Atotal/A
plants. The economies of mass production described in section 3.1.2 suggest that the capital cost
decrease with the cumulative number of plants built, N . The capital cost per unit output delivered
in Atotal therefore differs slightly from (8) which considers only one plant. Instead we now have

KC(A) = η
k(DA)

DAtotal
N1+log2 ε = KC(A0)

(
A

A0

)α−(1+log2 ε)

, (9)

where the exponent on N = Atotal/A comes from (3). As discussed in section 3.1.3, observations
suggest that the exponent in (9) is close to zero. If the economies of mass production are sufficiently
strong or if economies of unit scale are weak, so that α− (1+log2 ε) ≥ 0, then KC(A) is an increasing
function of A and since the transportation cost is assumed to be increasing, the total area-dependent
cost, K(A), is now increasing as well. In this situation, the optimal area is A = 0, and the system is
driven to the extreme of small and distributed units.

An example that demonstrates the benefits of decentralization is distributed electricity generation
as noted by Lovins [55]. According to [10], on-site generation could result in 30% cost savings in
transmission and distribution, which together account for above 40% of the cost of electricity for
residential customers [63]. Furthermore, distributed generation allows for the combined generation
of heat and electricity which can result in energy savings from 10% to 30%, depending on the type
and size of co-generation units [63].

Decentralization also has safety and security implications. For example, while small nuclear reac-
tors (SMRs) may increase the domain of applications for nuclear energy, dispersed nuclear generation
offers a greater number of targets for individuals with disruptive motives. Another concern is nuclear
proliferation. With widespread adoption of nuclear technology, it becomes more difficult to moni-
tor nuclear fuel to ensure proper handling and secure distribution. Yet these security risks can be
managed by other means. For example, most SMRs are designed for off-site refueling, which reduces
the accessibility of the core by unauthorized personnel. In other cases, decentralization can have the
potential of improving safety and increasing security. Chlorine production is a clear example where
both storage and transportation carries significant safety risks due to the toxicity of the product.
Decentralization enables the production of chlorine close to points of demand thus reducing the need
to store and transport this hazardous substance. This results in a substantial decrease in the safety
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risks associated with the use of chlorine. More generally, by its sheer nature, a smaller scale of any
technology reduces the local impact of possible catastrophic failure.

4.2 Investment flexibility

Unit scale affects the flexibility of an investment in several important ways. First, small-scale units
can be used in multiples to better match the output requirements of a given project thus avoiding
either capacity shortages or excess capital investment. Second, small units can be deployed more
flexibly over time. They can be installed sequentially as uncertain demand evolves, avoiding excess
investment in the early life of a project or investment errors later in the project life cycle. Also, mass-
produced, standardized units can be built to stock and deployed more quickly than custom-built,
large-scale units, reducing the financing lag between investment and revenue generation. Finally,
while the lifetimes of custom-built infrastructural investments tend to be very long, this need not be
true for small-scale technologies. A shorter investment cycle for small-scale technologies would allow
for disengagement if market conditions worsen without forsaking large sunk costs.

A full-fledged practical evaluation of these benefits would require detailed stochastic models of
the underlying variables, and a rigorous real option valuation. We instead consider simple models
that illustrate the significance of these investment advantages individually. The first two models are
adapted from [39].

4.2.1 Investment advantages of modularity

Being able to make investments in small increments over time provides significant economic advan-
tages. The concept is best illustrated by an example: consider a firm, such as an electric utility,
planning the future expansion of a plant to satisfy increasing demand. The firm has to satisfy all
demand and has two options for investment: modular and non-modular. The modular investment in-
volves increasing the capacity in increments of x and the non-modular investment involves a one-shot
investment of nx units, where n > 0. For simplicity we assume that n is an integer.

The current capacity matches the demand, and demand each year either increases by x with
probability p or stays the same with probability 1− p. The lead-time for both types of investments
is zero and the total additional capacity to be installed is nx. With the first increase in demand, the
firm can either choose to make a one-time capacity expansion of nx units or increase the capacity in
increments of x every time the demand increases, for a total of n times.

The cost of a big (non-modular) and a small (modular) investment for each increment is denoted
by Kbig and Ksmall, respectively. With a constant discount rate, r, the expected discounted cost of
the non-modular investment (occurring the first time demand increases from current level) is

Ibig =

∞∑
k=0

(1− p)kp Kbig

(1 + r)k
= Kbig

p(1 + r)

r + p
.

Turning now to the modular investment scenario, denote by Ii the expected discounted cost of
the i-th investment. This investment occurs at the end of the k-th year (k > i − 1) when demand
rises for the i-th time. That is,

Ii =

∞∑
k=i−1

(
k

i− 1

)
(1− p)k−i+1pi

Ksmall

(1 + r)k
= Ksmall(1 + r)

(
p

p+ r

)i
.

(For derivation of the last step see appendix §C.) Given the expected cost of each increment, we can
calculate the total expected discounted cost, Ismall =

∑n
i=1 Ii, of the modular scenario:

Ismall = Ksmall
p(1 + r)

r

(
1−

(
p

p+ r

)n)
.

Taking the ratio of the total costs of the modular and the non-modular strategies we have

Ismall

Ibig
=
Ksmall

Kbig

(p+ r)

r

(
1−

(
p

p+ r

)n)
=
Ksmall

Kbig

(
1 +

1

ρ

)(
1−

(
1

1 + ρ

)n)
, (10)
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Figure 2: The ratio nKsmall/Kbig evaluated at different n with equal total cost Ismall = Ibig and with
ρ = r/p = {0.1, 0.2, 0.3}.

where ρ = r/p. The ratio Ismall/Ibig is strictly decreasing in ρ, corresponding to increasing attrac-
tiveness of the modular investment strategy as ρ increases. The reason for this is straightforward;
increasing the discount rate, r, lowers the present value of future costs and decreasing the probability
of demand increase p has the consequence of further deferring these costs into the future. Both reduce
the present-value cost of the modular strategy.

Demanding that the two scenarios have the same total cost, Ismall = Ibig and rearranging (10)
reveals how much more one is willing to pay for capacity nx spread out over n separate investments,
i.e. nKsmall rather than incurring all the cost, Kbig, at once. As can be seen in Figure 2, the ratio
nK/Kbig increases almost linearly in n. For instance, with ρ = 0.2 as in Figure 2, considering 10
years of demand increase; the total investment cost 10Ksmall of the modular strategy is allowed to
be over twice that of the one-off investment cost Kbig; yet still produce an equivalent present-value
of the total cost.

4.2.2 Investment advantages of shorter lead-time

Mass-produced modular technology that is manufactured to stock can significantly reduce the lead-
time to deploy a new investment. We next examine how shorter lead-times can be beneficial in terms
of total investment costs, again via a simple example. Similar to the previous section, assume a firm
is planning the future expansion of a plant that has to satisfy increasing but uncertain demand. As
above, the demand increases by x with probability p or it stays the same with probability 1− p. Let
T denote the minimum number of years until the current excess capacity runs out; thus, the current
excess capacity is Tx.

The firm has two options for investment. It can either invest in an expansion project with a
long lead-time Ll or a short lead-time Ls. To compare these two investment options, we assume
that T ≥ Ll > Ls. Let Kl and Ks denote the costs of expansions with long and short lead-times
respectively. Then, the total expected cost of these expansions are obtained as follows:

Ii =

∞∑
k=0

probability of initiating construction in year k + T − Li︷ ︸︸ ︷(
k + T − Li − 1

T − Li − 1

)
pT−Li(1− p)k

[
Ki

(1 + r)(k+T−Li)

]
︸ ︷︷ ︸

discounted cost in year k + T − Li

= Ki

(
1

1 + ρ

)T−Li
where i ∈ {l, s} and ρ = r/p. Clearly, as the lead-time decreases, the expected present value of the
cost decreases since it can be deferred further into the future. The value in shorter lead time can be
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Figure 3: The figure shows the ratio of the immediate investment cost of the short lead-time option to the
long lead-time option for ρ = r/p = {0.1, 0.2, 0.3}, for which their expected costs are equal.

visualized in a manner similar to the previous example. Equating the expected present value of the
cost for the two lead-times, i.e. Il = Is we see that

Ks

Kl
= (1 + ρ)Ll−Ls

A difference in lead-time of only a couple of years can, for reasonable values of ρ, therefore compensate
for significant increases in capital cost. The effect is illustrated in Figure 3. For example, at ρ = 0.2
a difference in lead-time of four years can make up for a factor of two increase in the cost of the short
lead-time technology. The attractiveness of the shorter lead time scenario is obviously compounded
at greater values of ρ. The reasons are the same as in the preceding section; increasing the discount
rate, r, lowers the present value of future costs and decreasing the probability p of a demand increase
has the consequence of further deferring these costs in the future.

4.2.3 Investment advantages of shorter lifetimes

Another feature of small unit scale technology is that it tends to have shorter lifetimes. While unit
scale does not necessarily determine unit durability, large unit scale tends to be correlated with a
long operating life. This is true for several reasons. Building large unit scale technology requires
substantial structural elements to accommodate large weights, heights and lengths of components.
Because these structural components are inherently long-lived, this tends to drive engineers to make
the other system components equally long-lived, since the incremental investment needed to make
the entire system long-lived is low. Also, because large unit scale projects are often produced on
a customized basis, engineering the technology for long lifetimes is necessary to amortize the fixed
design and construction costs.

The reverse is true for small unit scale technology; since there are no large scale support structures
with inherently long lifetimes, there is no need to engineer other system components for long lifetimes.
Additionally, when small unit scale technology is mass manufactured, the fixed costs of design and
production capital can be amortized over large numbers of units rather than making any given
unit long-lived. Thus, the choice of unit scale often has important consequences for the length of
the investment cycle, which in turn can significantly impact investment returns. Specifically, when
future profits are uncertain, a shorter investment cycle allows for the option of disengaging sooner if
conditions turn unfavorable while retaining the option of reinvestment at a later stage.

We will here consider a simple example that serves to illustrate the value of capital lifetime.
Consider a firm that has the ability to invest, with no lead-time, in a physical asset with a lifetime of
n years at a cost of Kn. Regardless of lifetime, the asset produces output at a constant rate with an
uncertain annual operational profit, π(t). The profit, π(t), can assume one of two states; a high state
πhigh = 1, and a low state, πlow = 0. The state of a period is observed prior to the start of the period.
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The profit changes state from year to year with a probability p. The discrete time Markov process,
π(t), that characterizes the profit stream over time can be described by the transition matrix M ,

M =

( πhigh πlow

1− p p
p 1− p

)
.

The strategy of the firm is to reinvest in capital of the same lifetime (and cost) after the current
investment has expired, as soon as the observed profit reaches the high state. When considering such
a strategy over an infinite time-horizon, note that the profit stream is independent of the lifetime of
the individual investment. Since we have assumed zero lead-time, the firm will recommit once profits
are positive, meaning that the firm is only idle when profits are zero. With a shorter lifetime of the
investment, the firm can defer investment costs more frequently and more easily avoid being invested
during non-profitable years.

Denote by In the expected present value of all future investment costs in a year when an investment
is made. Since the underlying process is time-invariant and since In is calculated over an infinite
time-horizon, the value of In is the same every year an investment is made. Letting νn be the random
time between two subsequent investments, we then have

In = Kn + InEνn
[

1

(1 + r)νn

∣∣∣∣π(0) = 1

]
, (11)

where r is the discount rate. The random time, νn, is the stopping time νn = inft {t ≥ n;π(t) = 1|π(0) = 1},
that is, the first time profits reaches the high state after n years. As shown in appendix §C, (11) can
be solved for Kn:

Kn = Infn,

where fn is a function of p, r and n. Two scenarios, with capital of different lifetimes, n1 and n2,
would be equally attractive if In1 = In2 , since their respective profit streams are identical. Thus, we
can find the relation between their respective individual investment costs, Kn1 and Kn2 , from

Kn1

Kn2

=
fn1

fn2

.

The time value of money plays a natural role in considerations regarding lifetime; with a higher
discount rate, it becomes more favorable to defer investments, which would favor a shorter lifetime
in relative terms. As can be seen in Fig 4, uncertainty over future profits will further increase the
attractiveness of a shorter investment relative a longer lived one. For instance, assuming that there
is a 10% chance that profits will change from year to year, the value of an investment lasting only 5
years is roughly half of one lasting 30 years.

4.3 Operating flexibility

Small unit scale provides increased flexibility in terms of deploying partial capacity since it is possible
to selectively run varying numbers of smaller units in order to achieve a targeted level of total output.
Facilities consisting of a single large unit often have to be operated in an effectively binary, “on-off”
mode, producing either nothing or at maximum capacity. A coal-fired power plant, for example, has
a limited range of outputs for which it can operate efficiently. As a consequence, these plants are
limited to providing steady, base-load power and cannot effectively serve variable peak-load demands
or efficiently slow down to avoid waste during period of low demand.

To illustrate this idea, we rely on a model of a plant consisting of multiple units operated in an
on-off fashion with total capacity C. The plant has to satisfy a random demand D. Let n denote the
number of units in the plant, so Cu = C/n denotes the unit capacity of the equipment in the plant.
The excess operational capacity, XC , can be written as

XC = kCu −D, where k =

⌈
D

Cu

⌉
.
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Figure 4: The ratio of the individual investment cost, Kn to K30, such that the expected present values of
all future investment costs over an infinite time horizon are the same for a scenarios where the individual
lifetime is n and 30 years respectively. The line p = 0 represents the deterministic case when there is
zero time between subsequent investments. The discount rate is r = 10%.
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Figure 5: The figure shows the average excess operational capacity for different unit capacities where D is
a normally distributed random variable with mean µ and standard deviation σ, truncated between 0 and
100.

The expected excess operational capacity, E[XC ] is

E[XC ] = CuE[k]− E[D] = Cu

n∑
k=1

kP [(k − 1)Cu < D ≤ kCu]− µ,

where µ is the mean demand.
Figure 5 depicts the average excess operational capacity for different unit capacities Cu using

two different normal distributions for D, defined by µ and σ, both truncated between 0 and 100. It
can be seen from the figure that when the unit capacity is small, it is easier to satisfy the demand
with little excess operational capacity since the plant’s output can be adjusted in a flexible fashion.
However, as the unit capacity increases, that flexibility is lost. For example, when the unit capacity
is 100 there will only be one unit in the plant, and it will have to operate all the time whether the
demand is 1 or 100. Another important factor to take into account is how far the mean demand is
from the maximum possible demand. As the mean demand decreases, the impact of smaller unit size
on excess capacity in operation increases especially for larger unit sizes.

In the above model we implicitly assumed that storing the output of the plant under consideration
is too costly or not possible. With the possibility of storing the plant’s output, it is possible to achieve
high utilization with large unit sizes by carrying inventory. For example, the plant may be turned on
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Figure 6: The figure shows the total capacity investment required for different unit capacities and indi-
vidual unit reliability p = 0.9.

at full capacity when the inventory drops down to a certain threshold and can be kept in operation
until the inventory reaches a target level.

4.4 Diversification

Small unit scale also provides significant diversification benefits. By exploiting statistical indepen-
dence of many small operating units rather than relying on a few large operating units, it is possible
to have lower unit reliability yet still achieve higher overall system reliability. If all output stems
from one single large unit, a single failure can reduce output to zero, which makes it necessary to
incur the costs of substantial redundancies. If, however, the same total output is provided by 10,000
units that are easily replaced, the impetus for built-in redundancies in any given unit are diminished.
This reduced need for high unit-level reliability can both reduce capital costs and improve service
reliability.

We illustrate this concept with the following simple example. Suppose a utility is to provide an
output capacity D, available with a probability R in a given time period (1 − R is the probability
of failure). We assume that a single unit, with capacity Cu, can either be fully functioning with
probability p < R in a given time period or not at all. As a result, the utility will need redundancy
to make up for the missing reliability. So, the utility has to decide on the minimum number of units
to install, n∗, to ensure that the aggregate available capacity C(n) = nCu exceeds demand D with a
probability of at least R. With the assumed independence of the individual units this problem can
be formulated as

n∗ = min

{
n ≥

⌈
D

Cu

⌉∣∣∣∣P (C(n) ≥ D) ≥ R
}
, where P (C(n) ≥ D) =

n∑
s=

⌈
D
Cu

⌉
(
n

s

)
ps(1− p)(n−s).

For different R and Cu, Figure 6 shows the total capacity the utility has to invest in when D = 100
and p = 0.9. From the figure we can infer that as the size of the individual units increase, the amount
of excess capacity that needs to be installed significantly increases. For example, when R = 0.95, the
amount of excess capacity needed is five times more when the unit size is 50 compared to a unit size
of 1. As the system reliability increases, this difference also increases, and the excess capacity for a
unit size of 50 becomes 7-8 times the amount needed for a unit size of 1 in the case of R = 0.99.

4.5 Tipping points

Considering the factors discussed above, firms make a choice of unit scale based on the combined
effect of these various costs and benefits. The resulting total cost as a function of unit scale can
behave in one of two ways. There can be an intermediate unit scale that is optimal, with total costs
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Figure 7: The figure shows the total investment cost (12) as a function of unit size for different scale
parameters.

increasing as one deviates either up or down from this optimal point. Alternatively, total costs can
exhibit ”bang-bang” behavior, with costs either increasing or decreasing with unit scale, resulting in
an optimum that occurs either at the smallest or largest practical unit scale. In both cases, changes in
cost functions, scaling relationships or scale-dependent flexibility and diversification benefits – such
as those driven by advances in technology – can lead to a “tipping point,” at which the optimal scale
switches discontinuously from large to small.

In the case of an intermediate optimal scale, a tipping point may occur if the cost function has
multiple local minima and if the global minimum shifts from one local minimum to another as model
parameters change. For example, consider the following single-period model where a firm decides
how much capacity C to invest in order to cover a single period random demand D. For each unit
of unsatisfied demand, the firm incurs a penalty of q. Capacity costs exhibit economies of scale,
modeled as a power function. Then, the total cost, K(C), is

K(C) = k0C
α︸ ︷︷ ︸

capacity cost

+ qE [max{0, D − C}]︸ ︷︷ ︸
penalty cost

, (12)

Figure 7 shows the total cost as a function of unit size for two different scale parameters (α = 0.79 and
α = 0.80) when K0 = 0.8, q = 1 and D follows a piecewise uniform distribution with the following
probability density function

f(D) =


0 if D < 0 or D > 23,

0.297 if D ∈ [0, 1.5],

0.026 if D ∈ (1.5, 23].

Note that in Figure 7 there are two locally optimal unit sizes for both values of α, and 0.80 is a
tipping point, since at that value the optimum at the larger unit capacity B no longer has the lowest
cost but instead the local optimum A at a smaller unit capacity has the lowest cost. While this is a
simplified example, it serves to illustrate that even when capacity costs exhibit economies of scale, a
small shift in the underlying technology- or scale parameter- can radically impact the optimal unit
scale.

In other cases, cost functions may exhibit bang-bang behavior. Consider the following model
where we need to invest in Ctot = 100 units of capacity and have the option to invest in different unit
scales. Assuming the relationships described in sections 3.1.1 and 3.1.2 hold, we obtain the following
formula for capital cost:

K(C) = k0C
αN log2 ε+1 = k0C

α

(
Ctot

C

)log2 ε+1

∝ Cα−1−log2 ε, (13)
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Figure 8: The figure shows the total investment cost (13) as a function of unit size for different scale
parameters (ε = 0.9 and K0 = 1).

where C again denotes the unit size of the investment and N = Ctot/C is the number of units
installed. For different scale parameters, Figure 8 shows the total cost of investment as a function
of the different unit scales. In this example, the tipping point for α is about 0.85. When α ≥ 0.85,
the total cost function switches from being decreasing to increasing in unit scale, and hence a radical
shift in the optimal unit scale occurs.

The evolution of super computer technology illustrates a powerful real-world example of this basic
tipping point phenomenon. As noted previously, the traditional approach to achieving high capacity
and greater speed in the early life of an industry was to build increasingly powerful machines with
greater and greater processing speed and also increasingly large size. The ‘supercomputer market
crash’ of the mid 1990s occurred when mass-produced CPUs from the expanding personal computer
industry reached a tipping point. Somewhat suddenly, it became less costly to achieve high computing
capacity through large numbers of small-scale CPUs in parallel as we see in computer technology
today, and demand for traditional super computers collapsed. This historical example underscores
the point that sudden shifts in optimal unit scale due to technological advances can occur suddenly
and result in dramatic disruptions of entire industries.

5 Technologies on the verge of a tipping point toward
small unit scale

We next look at three examples of technologies that appear ripe for a shift to radically smaller unit
scale. While every technology must be evaluated on a case-by-case basis, these three technologies
have evolved to large unit scale without clear physical benefit and therefore serve as a natural starting
point. While anecdotal, these examples point to the potential broader benefit of re-examining the
aging orthodoxy of bigger-is-better in other infrastructure industries.

5.1 Ammonia synthesis

Among the most economically important catalytic processes to date is ammonia synthesis. Since
its inception almost a century ago, the synthesis of ammonia through the Haber-Bosch process has
provided the world with synthetic fertilizers, thereby dramatically altering Malthusian projections of
population levels constrained by food supply. Except for minor alterations to the catalyst, the process
looks very much the same throughout the $50 billion dollar industry of today [31, 34] as it did during
the early days of commercial implementation. One feature, however, has dramatically changed: unit
size. The first BASF plant had a capacity of 30 metric tons per day (MTPD) [45]. In comparison, the
currently planned urea facility in Collie, Australia has a nominal capacity of 3,500 MTPD, making
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it the largest in the world [73]. An increase in unit capacity by two orders of magnitudes epitomizes
the aforementioned trend in the evolution of unit size.

The synthesis of ammonia, as with most other catalytic processes, requires careful control of tem-
peratures throughout the reactor in order to maintain favorable kinetics, thermodynamic equilibria
conditions and stability of the catalyst. Managing the temperature profile throughout a reactor in
this process becomes progressively more difficult when increasing the reactor size; indeed, modern
ammonia synthesis reactors require additional internal heat exchangers to maintain optimal process
parameters. Additionally, ammonia synthesis typically occurs at a total pressure of around 200 atmo-
spheres. At such high pressures, the mechanical potential energy of a pressurized reactor of standard
size is on the GJ scale, which in itself poses substantial safety concerns. The fact that the gases
involved are highly explosive further exacerbates the consequences of a critical failure.

Assuming sufficient capabilities of automation such that labor costs can be decoupled from the
number of individual units deployed, a decrease in individual reactor size could potentially reduce
overall costs. First, decreasing unit size to the point that no internal heat sinks are necessary would
reduce the complexity of the individual reactor3. Also, the wall thickness of a pressure vessel scales
with the linear dimension of the reactor at constant pressure, and the reactor material will scale
proportionally to volume and hence also throughput. Therefore, the total amount of material used
will, to a first approximation, remain constant or decrease when deploying multiple smaller units
with the same aggregate capacity of a typical ammonia synthesis reactor. Furthermore, an array
of parallel smaller units would substantially mitigate the impact of catastrophic failure of a single
reactor. Also, catalytic processes, including the synthesis of ammonia, all suffer the problem of
catalyst deactivation. In a monolithic setting, regenerating or replacing catalysts requires a complete
albeit temporary shutdown of the reactor. Referring to the operational flexibility arguments, a more
modular plant consisting of parallel units would be less exposed to the risk of such complete but
unavoidable outages. Instead of bringing the entire output to a standstill, individual units could be
swapped out and repaired off-line. These factors all point to potential cost savings with a modular
infrastructure approach.

In the case of ammonia synthesis, there are two other major process steps upstream of the main
synthesis step: nitrogen and hydrogen production. These two sub-processes, typically cryogenic
distillation of air and steam-methane reforming, have evolved along with the conversion process to
large unit sizes. If the ammonia conversion were to occur at substantially smaller unit sizes, the
size of the upstream processes should also be reevaluated, perhaps to the benefit of other methods of
producing the constituents of the Haber-Bosch process, e.g. membrane air separation technologies and
water electrolysis. It is worthwhile mentioning that the main use of ammonia is in fertilizers. Serving
mainly the agriculture industry, the demand for the end-product is extremely diffuse, suggesting
potential benefits of distributed operation. Additionally, if water can be used as a source of hydrogen
through electrolysis, both inputs and outputs of the process are ambient, further strengthening the
case for small-scale, and distributed ammonia production.

5.2 Water desalination

One of the main engineering challenges of the coming century is to create large, stable and affordable
supplies of fresh water from the earth’s largest water reservoir, the oceans [62]. Among the various
desalination technologies available for this purpose, reverse osmosis (RO) has seen the largest growth
in recent years and represents almost half of the $20 billion desalination market today [36, 35, 30].
Some regions, notably the Middle East, parts of Australia and several island communities around the
world, have come to rely on reverse osmosis desalination as a base load source of fresh water.

Defining a unit scale in RO operations is less straightforward than in the previous examples
because the membranes are currently manufactured and assembled in small units called modules.
Regardless, the core process of separation in a modern RO-plant encompasses three components: a

3Performing a crude heat balance analysis, assuming uniform temperatures across the reactor with otherwise typical
reactor parameters (T = 700K, catalyst activity = 10µmol/g·s), a heat transfer coefficient through the reactor walls of
10W/m2K (heat absorbing medium is air without forced convection [23]) and a reaction enthalpy ∆H = −50kJ/mol NH3
reveals that auto-thermal conditions (generated process heat is balanced by losses to ambient air) apply with a cylindrical
radius of about 0.5 cm.
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Figure 9: Evolution of the payload of mining haul trucks. Data adapted from [48].

high-pressure pumping system, membrane modules housed in parallel pressure vessels, and an energy
recovery system. One of the most modern and efficient RO desalination plants in the world is the
Ashkelon plant in Israel with a capacity of 330,000 cubic meters of fresh water per day [66]. With
eight high-pressure pumps, the 40,000 cubic meters of fresh water per day and per pumping system
can serve as a benchmark for unit size in current RO desalination.

Almost half the cost of desalinated seawater through RO can be attributed to energy. Of the
remaining cost components, capital costs dominate, leaving only a minor fraction to other variable
costs [79]. With such a cost structure, the specific energy requirement (energy required per unit
output) serves as a decent indicator of the total price of a given RO desalination operation. Con-
ventional wisdom would suggest that to increase the physical efficiency of a process like RO, and
hence lower the specific energy consumption, the strategy would be to scale up unit size. Indeed, the
aforementioned plant in Ashkelon is not only one of the largest plants in the world but also one of the
most efficient with electricity requirements of 3-4 kWh/m3 of produced water [66]. The notion that
increased energy efficiency in RO has to be accompanied by increased unit size is, however, contra-
dicted by examining desalination systems found on recreational boats. With a capacity of little more
than one cubic meter per day, these small, modular systems consume only 3.8 kWh/m3 [77], which is
on par with the utility-sized operation. While based on the exact same technology, the tight on-board
space constraints have resulted in process designs that have similar levels of energy consumption but
with smaller footprints. This indicates that a truly modular design in RO desalination could lead to
additional future cost savings as production of small units is scaled up to match large scale demand.

5.3 Mining

The value of U.S. domestic production of raw materials from mining was estimated at $64 billion
dollars in 2010 [13]. Including further downstream processing, the raw materials sector accounts for
a substantial part of GDP and is the foundation of industrial economies. While mining operations
differ substantially for different minerals in varying geologic formations, the task of hauling ore from
the point of excavation to the initial processing site is worth examining from the perspective of unit
scale. We focus here on operations in open pit, or surface mining, but the concepts apply more
broadly to other mining operations.

Labor productivity is a key metric in evaluating mining operations because labor accounts for a
large fraction of total costs. Therefore the most natural way to increase profitability of a given mine
has been to scale up the size of individual process equipment such as loaders and haulers. Indeed, as
seen in Figure 9, the size of the largest available haulers has increased by a factor ten over the past
50 years. A general consequence of this trend is that smaller mines, which preclude the use of larger
equipment [25], become less profitable, and hence mining operations tend to be more concentrated
on large mines, as documented by [42] in the case of the global copper industry from 1975 to 2000.

In a report on the future of the mining industry published by the Rand corporation in 2001
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[64], the opinion among key industry insiders was divided as to whether there would be a continued
increase in truck sizes or if these economies of scale had reached a peak. In hindsight, knowing that
truck sizes have indeed stagnated and the very largest trucks have stalled in the 400 ton class (as
can be observed by considering the current portfolio of Caterpillar), the latter viewpoint seems to
have prevailed. Some of the possible factors behind this apparent trend are presented in [25]. For
instance, auxiliary civil works, e.g. roads and bridges, to accommodate larger trucks going in and
out of a mine become more costly. Moreover, larger equipment diminishes the possibility of selective
mining techniques, thus resulting in the transportation of lower grade ores for further processing. The
complexity of larger machinery also increases markedly at the largest end of the spectrum and hence
requires additional training of operators and repair crews as well and larger (and more expensive)
maintenance facilities.

With these issues in mind as well as considering workers’ safety, automating various mining pro-
cesses is a potentially attractive means for future cost reductions. Additionally, with mining typically
being a remote operation, additional infrastructure has to be provided in order to accommodate on-
site labor. According to [22] the cost of one mining truck driver in remote areas of Australia amounts
to $150,000 per year4, of which more than $36,000 goes to auxiliary support such as transportation,
accommodation and food. Operating in three shifts, this translates into $450,000 per year per truck
in labor costs, which does not include personnel in training. While truck prices are hard to ascertain
exactly, assuming that the investment required is on the order of $5 million, the capital charges at 10%
interest are almost on par with labor costs, making the potential benefits of automation apparent.

Even though tests have been performed recently on operating retro-fitted autonomous mining
trucks [22] in Australian mines, such technology has not yet caught on. With non-stationary and
interacting robotic systems making progress by the day, as manifested by Google’s autonomous car
[16] and ‘Junior’, the driverless vehicle developed by Volkswagen and Stanford through DARPA [69],
it is only a matter of time before such technology becomes viable in isolated areas such as a mine.
When the technology does become available, there is little reason automation should proceed with
the ultra-large-size equipment of today and not with much smaller units, perhaps in the 1-10 ton
class. In addition to the flexibility arguments raised in previous examples favoring small unit size,
smaller automated units can make smaller mines economical alongside large ones, thus increasing the
total resource base. Also, from a physical perspective, the dead weight to payload ratio is likely to
decrease with smaller trucks, suggesting potential fuel savings as well.

6 Conclusion: Learning to “think small”

When choosing from a palette of available technologies, the ultimate decision has historically been
predicated on a positive response to the question: Does the technology “scale up?” Yet as we have
argued in this paper, our increased ability to automate and control processes without the presence of
either the human hand or mind, the capability of mass production to drastically reduce capital costs,
and a more enlightened view of the total costs and benefits of unit scale, casts significant doubt on
the validity of the bigger-is-better criterion. As we have argued, scaling up in numbers – rather than
in unit size – can provide many of the same benefits of large unit scale and offers entirely new benefits
that can only be achieved with small unit scale. Consequently, in our view, the fundamental decision
processes surrounding the choice of technologies and their implementation need to be revisited.

Doing so, however, requires an entirely new mind set; educators, engineers, business leaders,
financiers, standards bodies, regulators – the entire industrial ecosystem – must learn to “think
small.” In order to reap the benefits of small unit scale and achieve the needed paradigm shift,
institutional biases towards large-scale must be eliminated and knowledge about how to think small
must be developed.

Engineers, for one, need revised training and new conceptual tools. In today’s engineering schools,
students are instilled with the notion that unit scale-up is a precondition for the viability of most
technologies. So consequently, they focus on designing for scale economy. Instead, they must learn
how to design small – design for granularity as it were. Small modular technologies designed to

4These numbers are given in $ Australian but with an exchange rate of roughly 1:1 the numbers are almost equivalent
to $ U.S.
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function in massively parallel configurations should not look like miniature versions of behemoth
industrial plants; they require their own distinct approach to design – one that emphasizes off-
loading control functions to central controllers, simplifies functionality to minimize the need for
ongoing control and maintenance, and reduces part counts by creating more integrated components.
Engineering small requires designs that aim to leverage the economies of mass production and exploit
the power of automation and sensors to eliminate the need for human labor. Only by applying such
design principles can the full benefits of small unit size be realized. Engineers must also be exposed
to examples of designs that are optimized for granularity, so they can develop an instinct for how it
is done.

Business leaders and financiers must likewise revise their approaches to project evaluation. Long-
standing net present value (NPV) evaluations based on simplistic pro-forma projections of factors such
as demand, cost, price, unit reliability and so on, must be replaced by the use of more sophisticated
models (of the sort illustrated in our paper) that accurately account for the many inherent flexibility
and option-value benefits of small unit scale. Only then will their decisions be driven by the true
economic costs and benefits of unit scale.

Lastly, a mass market for small unit scale technology will not flourish unless industry leaders
recognize the potential of thinking small and create the necessary standards and common interfaces
needed to open their markets to small modular technology. Indeed, one of the reasons behind the
astonishing developments of the computer industry in the past century was the abandonment of
the mentality that every component had to be manufactured in-house. Opening up the black box
that was the computer to outside parties allowed firms to focus on fewer parts and also forced the
industry to adopt standards, resulting in the “plug-and-play” environment that eventually made
the PC possible and so dramatically successful. In addition, down-sizing, standardizing and then
proliferating technologies to a larger domain of applications further reduces costs by increasing the
aggregate market size for each technology. It also increases the likelihood of applications not yet
thought of; after all, the early pioneers of the computing industry could hardly have anticipated the
multitude of applications that permeate virtually every part of our society today, like smart phones
and video games.

These changes in mindset and industry norms will take time to develop; massively parallel plants
will not suddenly appear overnight. Indeed, there is considerable inertia in most industries that may
impede the transition to thinking small for many years to come. One explanation for this inertia is
known as the “lock-in effect” in the economics literature. As in the case of the QWERTY keyboard,
once a technology establishes dominance early on, a later superior technology may not be able to gain
market share [28]. In his seminal work, Arthur [21] shows that this kind of a behavior is observed
in industries with increasing returns to learning, as is the case with large-scale infrastructure. But
two factors offer hope that this lock-in can be overcome. For one, as demonstrated in the preceding
sections, once the flexibility and diversification benefits of small-scale technology are recognized,
these may tip the scales toward adoption. Secondly, niche applications of small-scale technologies
in areas where larger scales are infeasible or too costly may allow firms to accumulate the necessary
experience to compete with large-scale technologies in conventional markets, as was the case with
microcomputers. Once this transition happens and small scale thinking takes root, it has the potential
to radically disrupt entire industries. Like the behemoth reptiles of the Cretaceous period, individuals
and firms caught on the wrong side of such a meteoric transition will likely suffer.

Yet despite the great promise of thinking small, we are not arguing that small-scale technology is
a panacea. Indeed, some enterprises adopting a small-scale strategy have had failures such as Raser
Technologies5. And there will always be a role for large unit scale; massive rivers require massive
hydroelectric dams, after all. Still, the concept that every industrial process with large aggregate
output requires large unit scale technology to match is fundamentally flawed and inherently limiting.

5Raser Technologies was a Provo, Utah based geothermal-energy developer that sought bankruptcy protection in 2011
[57]. It focused on constructing geothermal power plants that used small modular equipment and had only one plant in
operation, which was located in Beaver, Utah, when it declared bankruptcy. The reasons behind its failure are disputed.
Raser sued its technology provider Pratt & Whitney Power Systems for fraud regarding the efficiency of the units [61].
Pratt & Whitney on the other hand claimed that the site of the power plant was not suitable [53]. Raser’s shareholders
also filed a class action lawsuit against some of its current and former directors, and officers over failing to disclose material
adverse facts regarding the power plant’s site [56].
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We will all benefit from a more enlightened world in which the ability to “scale up” does not dictate
our choice of technology.
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Appendices

A Scaling laws for elastic bodies

Applying the theory of continuum mechanics to the scaling of engineered structures allows for a
number of conclusions regarding the prospects of scaling up a solid body in size. The solid body can
be characterized by its material distribution and once this body is subjected to forces, both body
forces like gravity and contact forces like pressure on surfaces, it will deform, causing internal stresses
throughout the material. Most engineered structures are designed to operate within the elastic limit,
i.e. when loads are removed the structure will revert to its original shape. In this elastic region,
internal stresses and material displacements, the latter described by a strain tensor, typically exhibit
a linear relationship. The equations governing the dynamics of a solid body can be written as

∂iσij + Fj = ρ∂2
t uj , (14)

σij = Cijklεkl, (15)

εij =
1

2
(∂iuj + ∂jui) , (16)

where F denotes the body forces, σ is the stress tensor, ε is the strain tensor and where C is the
fourth order elasticity tensor that describes properties of the material, all being functions of the
spatial location x as well as of time. The function u(x, t) describes the displacement of a mass
particle, originally at x0, at time t. That is, x = u(x, t) + x0. The equations (14)-(16) are defined
on U × R ⊂ R4, with boundary ∂U . To completely determine the problem, boundary conditions
and initial conditions have to be specified. The boundary conditions are typically of mixed type,
where traction T is specified on one part of the boundary, ∂UT , and displacements are given on the
complementary part, ∂Uu, with ∂U = ∂UT ∪ ∂Uu.{

σn = T, x ∈ ∂UT ,
u = u, x ∈ ∂Uu, (17){
u(x, 0) = u0(x), x ∈ U
∂tu(x, 0) = u̇0(x), x ∈ U (18)

By rescaling the problem we intend to study a similar body where all spatial dimensions have been
scaled by a factor λ > 0 and time has been scaled by a factor µ > 0. This rescaling differs from a
mere coordinate transform in that we are interested in keeping the boundary forces constant. For
example, the pressure on a submarine at a given depth is approximately independent of the size of
the vessel. The scaled domain is denoted by Uλ,µ. That is, for any function f̃ defined on Uλ,µ we
have

f̃(ξ, τ) = f̃(λx, µt), (19)

where (ξ, τ) ∈ Uλ,µ and (x, t) ∈ U . Furthermore, we say that f̃ on Uλ,µ is generated by a function f
on U if

f̃(ξ, τ) = kf(x, t), (20)

where k is some constant. If k = 1 we call f̃ on Uλ,µ unitarily generated by f on U . From (19) and
(20) it follows that the spatial derivatives of a generated function evaluate to

∂if̃ |(ξ,τ) =
k

λ
∂if |(x,t), or simpler, ∂if̃ =

k

λ
∂if, (21)

and for time

∂tf̃ =
k

µ
∂tf. (22)
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Solution to scaled problem

We will investigate possible solutions to the scaled problem on Uλ,µ, that is

∂iσ̃ij + F̃j = ρ̃∂2
t ũj , (23)

σ̃ij = C̃ijklε̃kl, (24)

ε̃ij =
1

2
(∂iũj + ∂j ũi) . (25)

The magnitude of the boundary forces is assumed to be the same as in the initial problem, i.e.
|σ̃n| = |T̃ | = |T |. Given a solution u(x, t), together with its derived entities ε(x, t) and σ(x, t), to the
initial problem (14-18) defined on U we will show that for certain choices of the scaling parameters
(λ, µ) the generated function ũ(ξ, τ) = λu(x, t) solves the scaled problem for a family of generated
functions

F̃ (ξ, τ) = αF (x, t),

ρ̃(ξ, τ) = βρ(x, t), (26)

C̃(ξ, τ) = γC(x, t),

for a certain parameter ensemble (α, β, γ). The choice of parameter ensemble has important physical
interpretations. For instance, if β = 1/2 the material in the scaled problem has been selected to have
half the density of the original material. Note that our choice of ũ(ξ, τ) = λu(x, t), where λ is the
spatial scaling coefficient, leads to the same strain as in the original problem, regardless of the choice
of parameter ensemble for the other functions. This can be seen by using (21),

ε̃ij(ξ, τ) =
1

2
(∂iũj(ξ, τ) + ∂j ũi(ξ, τ)) =

1

2

(
λ

λ
∂iuj(x, t) +

λ

λ
∂jui(x, t)

)
= εij(x, t). (27)

That is, the new strain is unitarily generated by the original strain. Assuming the same material for
the scaled problem suggests that ρ̃ and C̃ on Uλ,µ are both unitarily generated by their counterparts
on U , i.e. β = γ = 1. Then, since the strain ε̃ is unitarily generated, the stresses, σ̃, follow suit

σ̃ij(ξ, τ) = C̃ijkl(ξ, τ)ε̃kl(ξ, τ) = Cijkl(x, t)εkl(x, t) = σij(x, t). (28)

This means that the pressure boundary condition (17) is fulfilled. By using (22) we see that to meet
the initial condition,

∂tũ(ξ, 0) =
λ

µ
∂tu(x, 0) =

λ

µ
u̇0(x), (29)

we need λ = µ. That is, time scales with the same factor as the spatial dimensions. Finally, the
dynamics of the system read

∂iσ̃ij + F̃j = ρ̃∂2
t ũj (30)

1

λ
∂iσij + αFj =

1

λ
ρ∂2
t uj . (31)

Thus, if α = 1/λ, we have found a solution to the scaled problem Uλ,λ in ũ(ξ, τ) = λu(x, t).
A physical interpretation of the result above is that as long as body forces decrease with the

same factor as the spatial dimensions increase, a body can be scaled up and subjected to the same
boundary conditions while still exhibiting the same strains. If the original body had a resonance
frequency at f , the scaled version will have a resonance mode at f/λ and all other dynamics will
have slowed by a factor 1/λ. If body forces can indeed be scaled (for instance by altering electric and
magnetic fields) the structure in question can be symmetrically scaled and operated under identical
conditions. For most engineering purposes the body forces are gravitational and scaling them down
is not within our reach as long as we use the same material and hence, a uniform scaling of the
structure is not possible6. However, the solution still holds in the limit where boundary forces are of

6However a bridge or other structure built on the moon would behave like its counterpart on Earth if all dimensions are
scaled up by the ratio of gravitational accelerations which is approximately 6 : 1
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such a magnitude that body forces can be disregarded. This would be the case in practical situations
as e.g. high-pressure vessels, submarines at depth and hauling truck beds (considering the load as a
boundary condition).

Note that if either body forces can be scaled down or ignored, the amount of material used is in
the scaled structure is ∫

ρ̃dUλ,µ = λ3

∫
ρdU . (32)

For situations where body forces cannot be disregarded, a structure cannot be uniformly scaled and
operated under similar conditions. If body forces are gravitational it seems likely that a scaled up
structure need to be augmented in the structural elements to be able hold the increased weight. We
can therefore generalize and claim that if the same materials are used in a scaled up structure, the
amount required scales at least as λ3. Consequently, we can dismiss the claims in the literature, see
e.g. [37, 41, 74, 59], that the amount of material required when scaling up goes like the surface area,
that is, like λ2. These claims are then usually linked to the assumption that the cost of a structure
is proportional to the amount of material used, and hence that cost scales accordingly.

If the body forces are gravitational, one way of achieving uniform scale-up is to select a lighter
material with otherwise identical properties. While there of course are limits to such selections we
show such scaling works. Again, we assume that the solution ũ to the scaled problem on Uλ,µ is
generated from the original solution according to ũ(ξ, τ) = λu(x, t). With gravitational body forces
only we have, in the original problem,

F (x, t) = ρ(x, t)g, (33)

where g is the acceleration of gravity which we assume constant. Hence, if we in the scaled version
assume a density scaling 1/λ, i.e. ρ̃(ξ, τ) = (1/λ)ρ(x, t), we have managed to correctly scale the body
forces. However, for the dynamic equation we now have

∂iσ̃ij + ρ̃gj = ρ̃∂2
t ũj (34)

1

λ
∂iσij +

1

λ
ρgj =

λ

λµ2
ρ∂2
t uj . (35)

By scaling the time domain by a factor
√
λ, i.e. µ =

√
λ, the result comes out correct on the

right hand side in (35). The problem is now solved if the initial velocity conditions in (18) can be
scaled by a factor

√
λ and if the dynamics are allowed to be slowed down with a factor 1/

√
λ. It is

straightforward to show that the same result can be found by using a material with the same density
as in the original problem but where the stiffness has increased by a factor λ, i.e. C̃(ξ, τ) = λC(x, t).

B Locational flexibility

We are considering the total area-dependent cost:

K(A) = KT (A) +KC(A). (36)

Both the transportation cost, KT (A), and the capital cost per unit output KC(A) are assumed to
follow power laws. For KT (A) we have

KT (A) = KT (A0)

(
A

A0

)β
,

where β > 0. In section §4.1, we derived an expression for the exponent in the power law for the
capital cost per unit output, KC(A), influenced both by economies of unit scale and the economies
of mass production. For brevity we write this power law here as:

KC(A) = KC(A0)

(
A

A0

)−γ
,
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Figure 10: Left. Implicit relation between the optimal area, Aopt, and the reference area, A0, defined
by the intersection of capital cost and transportation cost per unit delivered, i.e. KC(A0) = KT (A0) =
K0. Right. The dimensionless capital cost per unit delivered, K(Aopt)/2K0, at the optimal area. The
denominator, 2K0, is the total cost per unit delivered at the reference area, A0.

where γ = −(α − (1 + log2 ε)). From empirical observations, γ is likely to be close to zero. The
case when γ < 0, i.e. when both capital and transportation costs are increasing functions of the
area, results in the optimal area being as small as possible, as discussed in section §4.1. In the case
when γ > 0 the total function, K(A), is convex with a finite optimum, Aopt. Furthermore, there is
a point where the transport cost, KT , is equal to the capital cost, KC . Choosing the reference area,
A0, as this point, i.e. where KC(A0) = KT (A0) = K0, we know that total area-dependent costs
are dominated by capital costs for A < A0, and transportation dominated for A > A0. We find the
optimal area, Aopt, from

dK

dA
(Aopt) = 0

Aopt

A0
=

(
γ

β

) 1
β+γ

.

From this expression we notice that(
Aopt

A0

)β
=

(
γ

β

) β
β+γ

= λ
1

1+λ (37)

where λ = γ/β. Furthermore, the total cost can also be expressed through this one parameter, λ:

K(Aopt) = K0

((
Aopt

A0

)β
+

(
Aopt

A0

)−γ)
= K0

(
λ

1
1+λ + λ−

λ
1+λ

)
. (38)

These two functions are displayed in Fig 10 from which we can draw two qualitative conclusions.
First, the total area-dependent cost is at best a factor 1/2 of the cost at the reference point where
capital cost balances transportation cost. Second, from the implicit relation between the optimal
area, Aopt, and the reference area, A0, we see that for values of λ close to zero, the optimal area is
order(s) of magnitude smaller than A0 and the optimality occurs in the capital dominated regime.

C Investment flexibility

In the two examples on the benefits of increased modularity and shorter lead-time, we have made use
of the following identity:

1

(1− x)m
=

∞∑
k=0

(
k +m

k

)
xk. (39)
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That is, the coefficient
(
k+m
k

)
is the kth order coefficient in the Taylor expansion of 1

(1−x)m around
x = 0.

In the example on value as a function of lifetime we are considering a discrete time, binary process
π(t) ∈ {0, 1} described by the transition matrix M ,

M =

( πhigh πlow

1− p p
p 1− p

)
.

The Markov property of this process admits that the present value of all future investments, In, is the
same every year an investment is made. With the random time νn, between consecutive investments,
we have

In = Kn + InEνn
[

1

(1 + r)νn

∣∣∣∣π(0) = 1

]
, (40)

which can be rearranged as

Kn = In

(
1− E

[
1

(1 + r)νn

∣∣∣∣π(0) = 1

])
= Infn. (41)

We now need to calculate the expectation value:

E
[

1

(1 + r)νn

∣∣∣∣π(0) = 1

]
, (42)

where r is the discount rate and where νn is the random time between consecutive investments. This
expectation can be rewritten as

E
[

1

(1 + r)νn

∣∣∣∣π(0) = 1

]
=

= s
(n)
high

1

(1 + r)n
+ s

(n)
lowE

[
1

(1 + r)νn

∣∣∣∣π(n) = 0

]
, (43)

where s
(n)
high and s

(n)
low are the probabilities of being in the high and low state respectively, in year n,

conditioned on π(0) = 1. The distribution of νn, conditioned on π(n) = 0, is given by

P (νn = k + n|π(n) = 0) = (1− p)k−1p, k ≥ 1, (44)

which is the probability of the profit π reaching the high state after k years for the first time after
the current investment expires. The moment on the right-hand side in (43) is then found through

E
[

1

(1 + r)νn

∣∣∣∣π(n) = 0

]
=

1

(1 + r)n

∞∑
k=1

1

(1 + r)k
(1− p)k−1p =

1

(1 + r)n
p

r + p
.

Given an initial probability distribution, s(0) = (1, 0)T , (we start in the high state) the distribution
in year k i given by s(n) = Mns(0). Assuming that p 6= 1/2, the transition matrix M is non-
singular with eigenvectors v1 = (1, 1)T and v2 = (1,−1)T with corresponding eigenvalues λ1 = 1 and
λ2 = 1− 2p.With s(0) = 1

2
(v1 + v2) the distribution s(n) is then given by

s(n) =
1

2
Mn (v1 + v2) =

1

2
(λn1 v1 + λn2 v2) =

1

2

(
1 + (1− 2p)n

1− (1− 2p)n

)
The expectation value in (43) can now be written as

E
[

1

(1 + r)νn

∣∣∣∣π(0) = 1

]
=

1

2
(1 + (1− 2p)n)

1

(1 + r)n
+

1

2
(1− (1− 2p)n)

1

(1 + r)n
p

r + p
=

=
1

(1 + r)n
1

2

[
1 +

p

r + p
+

r

r + p
(1− 2p)n

]
. (45)
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The function fn in (41) is therefore

fn = 1− 1

(1 + r)n
1

2

[
1 +

p

r + p
+

r

r + p
(1− 2p)n

]
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