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Abstract

This paper studies how signaling can facilitate the functioning of a market with classical

adverse selection problems. Using data from Prosper.com, an online credit market where loans

are funded through auctions, we provide evidence that reserve interest rates that borrowers post

can serve as a signaling device. We then develop and estimate a structural model of borrowers

and lenders where low reserve interest rates can credibly signal low default risk. Announcing

a high reserve interest rate increases the probability of receiving funding at the cost of higher

expected interest payments conditional on obtaining a loan. Borrowers regard this trade-o¤

di¤erentially, which results in a separating equilibrium. Using the estimated parameters of the

model, we compare the credit supply curve and welfare under three alternative market designs

in our counterfactual policy experiment �a market with signaling, a market without signaling,

and a market with no asymmetric information. We �nd that the cost of adverse selection can

be as much as 16% of the total surplus created under no asymmetric information, up to 95%

of which can be restored with signaling. We also estimate the credit supply curves for each of

the three market designs and �nd backward�bending supply curves for some of the markets,

consistent with the prediction of Stiglitz and Weiss (1981).
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1 Introduction

Ine¢ ciencies arising from adverse selection is a key feature in many markets, with examples ranging

from �lemons�in used car markets (Akerlof, 1970) to toxic assets in �nancial markets (Morris and

Shin, 2012). An important source of ine¢ ciency in these markets lies in the inability of agents who

are of �good�types (e.g., sellers of high�quality cars) to distinguish themselves from the �bad�(e.g.,

sellers of low�quality cars), resulting in markets to unravel completely in the worst�case scenario.

The key insight of Spence (1973), however, is that when costly signaling devices are available, agents

who have di¤erent marginal cost of signaling can be induced to take action that reveals their true

type in equilibrium. Hence signaling can prevent the market from unraveling, with possibly large

welfare implications.

In this paper, we empirically study how signaling a¤ects the functioning of a market for unse-

cured loans using data from Prosper.com, an online peer-to-peer lending market where potential

borrowers are directly matched to potential lenders through auctions. At least since the seminal

work of Stiglitz and Weiss (1981), markets for unsecured loans have been considered to be classic

examples of markets that su¤er from potential adverse selection problems. A key feature of Pros-

per.com, however, is that each borrower can post a public reserve interest rate � the maximum

interest rate that the borrower is willing to accept �when the borrower creates a listing on its Web

site. A reserve interest rate is the equivalent of a reserve price in standard auctions; we explore how

the borrower�s reserve interest rate can signal his creditworthiness in this market and how signaling

interacts with lending and repayment of loans.

The idea that the reserve interest rates can signal the borrowers� creditworthiness is quite

intuitive in the particular market we study. Consider, for example, a borrower who is posting

a high reserve rate � say, higher than the prime rate charged for typical bank loans. Then one

may infer that this borrower faces di¢ culty borrowing from outside sources, which in turn raises

concerns about the creditworthiness of the borrower. Of course, this intuition is not a complete

explanation of signaling, because there needs to be a countervailing force that induces borrowers

to post higher reserve interest rates. In the market we study, the natural countervailing force is

the probability of obtaining a loan. If listings with very low reserve rates are funded with very

low probability and, moreover, if the funding probability increases as a function of the reserve
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rate, then this can counteract the incentive for the borrower to post low reserve rates. These two

opposing incentives create di¤erent trade-o¤s for di¤erent borrowers, giving rise to the possibility

of equilibrium dispersion in the reserve rate.

This rather simple intuition forms the basis of our model of the borrowers. In our model,

borrowers are heterogeneous with regard to the cost of borrowing from outside sources and the

ability to repay the loan once it has been made. Given a trade-o¤between higher funding probability

and higher interest rate, the heterogeneity among the borrowers regarding the cost of borrowing

translates to the single-crossing condition. The low-cost types (e.g., borrowers with easy access

to credit from local banks etc., who use Prosper primarily for obtaining more favorable interest

rates) value a decrease in the interest rate on the potential loan relatively more than a simple

increase in the probability of obtaining a loan from Prosper. Conversely, the high�cost types (e.g.,

borrowers that do not have access to outside credit) would value an increase in the probability of

obtaining a loan more than a decrease in the interest rate. As long as borrowers of low�cost types

also tend to have higher ability to pay back loans, a separating equilibrium can be sustained in

which the low�cost types have incentives to post low reserve rates (and receive low interest loans

with relatively low probability) and the high�cost types have incentives to post high reserve rates

(and receive high�interest loans with relatively high probability).

In order to understand the role of the reserve interest rate in this market, we begin our analysis

by providing results from a series of regressions that lend support to the view that the reserve rate

functions as a signal. In our �rst set of regressions, we examine the e¤ect of the reserve interest rate

on the funding probability and on the actual interest rate conditional on being funded. The results

indicate that a lower reserve rate leads to a lower funding probability, but a lower reserve rate leads

to a more favorable contract interest rate on average (conditional on receiving a loan). This implies

that borrowers indeed face a trade-o¤ between the funding probability and the interest rate in

setting the reserve rate. Moreover, this is consistent with the notion that there exists heterogeneity

in how borrowers evaluate this trade-o¤: The considerable dispersion that we observe in the reserve

interest rate suggests that those who post high reserve rates care more about the probability of

being funded than about what interest they will pay and vice versa.

In our second set of regressions, we examine whether there are any systematic di¤erences be-

tween those who post high reserve rates and low reserve rates. We �nd evidence that those who post

3



high reserve rates are more likely to default than those who post low reserve rates, even conditional

on the contract interest rate (the actual interest rate that the borrower pays on the loans). This

implies that borrowers who post high reserve rates are riskier in that they are less likely to repay

their loans. Taken together, our �ndings suggest that borrowers are heterogeneous with respect to

their repayment ability and also with respect to how they evaluate the trade-o¤ between a decrease

in the interest rate and an increase in the funding probability. The results moreover suggest that

both dimensions of borrower heterogeneity are closely tied to the reserve interest choice. Anticipat-

ing this relationship between borrower type and reserve rate choice, the lenders o¤er high interest

rates for �bad�types and low interest rates for �good�types. In other words, the reserve interest

rate signals the type of the borrower, and this information is being used by the lenders.

These descriptive �ndings motivate us to develop and estimate a structural model of the online

credit market with informational asymmetry between the lenders and the borrowers. As explained

above, our model of the borrowers allows for heterogeneity regarding creditworthiness and the cost

of borrowing, which are privately known to the borrowers. The borrowers choose which interest

rate to post, where the choice reveals their types in equilibrium. As for the supply side of the

credit market, we model the lenders to be heterogeneous regarding their attitude toward risk. Each

lender chooses whether to fund a loan or not, what interest rate to charge, and how much to lend.

Once the loan is originated, the borrower faces monthly repayment decisions, which we model as a

single�agent dynamic programming problem.

In terms of identi�cation, the key primitives of the model that we wish to identify are the

distribution of the borrowers�types and the distribution of the lenders�attitude toward risk. For

identifying the borrowers�type distribution, we exploit variation in the borrower�s reserve rate and

how it is related to the default probability. In particular, we use the fact that the borrower�s type

and the borrower�s reserve rate have a one-to-one mapping in a separating equilibrium. Hence, a

borrower who posts a reserve rate corresponding to a particular quantile (say the � �quantile)

of the reserve rate distribution can be associated with the � � quantile of the borrower�s type

distribution. This feature is very useful, because it allows us to condition on a particular quantile

of the type distribution by simply conditioning on the reserve rate distribution. Then the observed

default probability at each quantile nonparametrically identi�es the borrower�s type distribution.

The distribution of the lenders�attitudes toward risk is also nonparametrically identi�ed by relating
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the characteristics of the borrowers to the funding probability.

In our counterfactual experiment, we compare the equilibrium market outcome and welfare

under three alternative market designs � a market with signaling, a market without signaling

(i.e., pooling) and a market with no information asymmetry between borrowers and lenders. In

particular, we simulate the credit supply curve under each or the three market designs by re-

computing the lenders�and borrowers�behavior using the estimates we obtain from our structural

model. As pointed out by Stiglitz and Weiss (1981), the credit supply curve in the market with

adverse selection problems may not be monotonically increasing in the interest rates, and sometimes

it becomes backward bending. The results of our counterfactual support their prediction: the credit

supply curve becomes more backward bending under pooling when borrowers cannot signal their

type with the reserve interest rate. With respect to welfare, we �nd that the cost of adverse selection

can be as much as 16% of the total surplus created under no asymmetric information, that is, the

total surplus under pooling can be as little as 84% of the surplus under no asymmetric information.

We also �nd that up to 95% of the di¤erence between the surplus under pooling and no asymmetric

information can be restored by signaling.

The organization of the paper is as follows: We review several related literature in the next

subsection. Then in section 2, we describe the institutional background and the data we use in

the estimation, and in section 3, we show some descriptive evidence of signaling in our data. We

then develop our structural model of the borrowers and the lenders in section 4. In section 5, we

describe identi�cation, and in section 6, we discuss estimation. We present our results in Section

7 and demonstrates the results of the counterfactual policy experiments in section 8. Section 9

concludes.

1.1 Related Literature

Our paper is related to several strands of the literature. First, our study is related to the literature

on adverse selection in credit markets. Since the seminal work of Stiglitz and Weiss (1981), there

have been many studies testing for adverse selection in credit markets. Examples include Berger

and Udell (1992), Ausubel (1999), Karlan and Zinman (2009), and Freedman and Jin (2010).

While testing for adverse selection is important in its own right and is the �rst step for further

analysis, estimating a model that explicitly accounts for information asymmetry among the players
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allows the researcher to answer questions regarding welfare and market design.1 Our paper goes in

this direction. In particular, we compare borrower and lender welfare as well as market outcomes

under three alternative market designs �a market with signaling, a market without signaling (i.e.,

pooling), and a market with no information asymmetry. These are questions that have not received

much empirical study.

The second strand of the literature to which our paper is related is the theoretical literature

on signaling. Starting with the seminal work of Spence (1973), signaling has been applied to a

wide range of topics.2 Even con�ned to applications in industrial organization, signaling has been

applied to advertising (Kihlstrom and Riordan, 1984; Milgrom and Roberts, 1986), entry deterrence

(Aghion and Bolton, 1987; Milgrom and Roberts, 1982), and war of attrition (Hörner and Sahuguet,

2011). More directly related to our paper, there is also a small theoretical literature on signaling

in auctions, whereby a seller signals her private information through the reserve price (Cai, Riley

and Ye, 2007, and Jullien and Mariotti, 2006, for example).

In contrast to the large body of theoretical work, however, the empirical industrial organization

literature on signaling is very thin. In fact, this paper is the �rst structural analysis of signaling

in industrial organization to the best of our knowledge. This is because identifying the e¤ect of

signaling often requires data on both the transaction and ex-post outcome, something that is hard

to come by in industrial organization.3 Consider, for example, studying whether sellers in used-car

auctions can signal the quality of their cars through the reserve price. For this purpose, one would

like to correlate the reserve price of the seller with the ex-post performance of the car (e.g., the

maintenance cost of the car), conditional on car characteristics that are observable to the buyers.

Correlation between the reserve price and the ex-post performance of the car would be indicative

of signaling. However, data on the ex-post performance of cars is usually unavailable. In this sense,

the data set of Prosper is ideal because it allows us to link the connection between the signal (i.e.,

the reserve rate) and the outcome (i.e., the default/repayment decision of the borrower). This

particular data structure allows us to take a rare look at how signaling a¤ects market outcomes

1See Einav, Finkelstein and Levin (2010) for a survey and motivation of recent papers that go beyond testing the
existence of information asymmetry.

2Examples include corporate �nance (Bhattacharya, 1979), political economy (Prat, 2002), and social norms
(Austen-Smith and Fryer, 2005).

3Outside of industrial organization, there are some empirical papers that examine signaling �for example, papers
on the sheepskin e¤ect (e.g., Hungerford and Solon, 1987). However, much of the literature has tended to focus on
testing for the existence of signaling (a few exceptions are Gayle and Golan, 2012, and Fang, 2006).
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and to quantify the e¤ect of signaling on key market outcomes. Another useful feature of Prosper

data is that the researcher has access to almost all the information that the lenders observe. This

feature mitigates the risk of confounding the e¤ects of signaling with unobserved heterogeneity.

Our paper is also related to the large empirical literature on screening. In particular, Adams,

Jenkins and Levin (2009) and Einav, Jenkins and Levin (2012) are two papers that are closely

related to our paper. They consider how an auto insurer can screen borrowers using the down

payment. They show that partly because of adverse selection, the lender�s expected return on the

loan is a non-monotone function of the loan size.4 A key feature of our paper that is di¤erent from

theirs is that we incorporate an explicit model of credit supply, which allows us to estimate the

credit supply curve and how it is a¤ected by adverse selection. Our paper also examines signaling,

while they examine screening.

Finally, there are a number of papers that use data from Prosper.com. Examples include

Freedman and Jin (2010), who examine adverse selection and learning; Rigbi (2011), who studies

the e¤ect of usury laws on lending; Ravina (2008), who studies the e¤ect of posted pictures on the

terms of the contract; and Iyer et al. (2010), who examine the lenders�ability to infer borrowers�

creditworthiness. In Iyer et al., the authors �nd, among other things, that the reserve interest

rate a¤ects the contract interest that the lenders receive, and note that signaling can be one

interpretation of their �nding. Because the focus of their paper is on the determinants of the

interest rate, the signaling story is not explored further.5 We view our paper and their paper

as complementary in that we make signaling the focus of our paper and explore the mechanism

through which signaling a¤ects the contract interest rate, lending, and repayment.

2 Institutional Background and Data

2.1 Institutional Background

Prosper.com is an online peer-to-peer lending Web site that matches borrowers with lenders and

provides loan administrative services for the lenders. Established in 2006, it has become America�s

4The issue of loan size (i.e., the borrower�s request amount) is also an important aspect of our setting. In our
structural model, we allow for the possibility that the borrower�s unobservable type may be arbitrarily correlated
with the amount choice.

5For example, they do not test how the reserve interest rate a¤ects the funding probability or how it a¤ects
repayment behavior.
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largest peer�to�peer lending marketplace, with more than a million members and over $280 million

in loans. In this section, we describe how Prosper operates, with a particular emphasis on the

auction mechanism used to allocate funds and to determine the interest rate.6 For details on other

aspects of Prosper, see Freedman and Jin (2010).

The sequence of events occurs according to the following timeline:

1. A borrower posts a listing.

2. Lenders bid.

3. Funding decision is made.

4. (If the borrower receives a loan in step 3) The borrower makes monthly loan repayments.

We explain each step in turn.

1. Borrower posts a listing A potential borrower who is interested in obtaining a loan

through Prosper must �rst create an account by providing his social security number, driver�s license

number, and home address. Prosper then pulls the applicant�s credit history from Experian, a third�

party credit�scoring agency. If the applicant�s credit score exceeds the minimum requirement, then

a listing is created, which contains information regarding the borrower�s characteristics, the funding

option (either �closed�or �open�), the amount of loan requested, and the maximum interest rate

(hereafter, reserve interest rate) he is willing to accept.7 There is no fee for posting a listing.8

The characteristics of the borrower that appear in the listing include credit grade, home�ownership

status, debt�to�income ratio, purpose of the loan, as well as any other additional information (text

and pictures) that the borrower wishes to post. The credit grade, which corresponds to seven

distinct credit score bins (AA, A, B, C, D, E, and HR), and home�ownership status are both

6The auction format was used until December 19, 2010. Prosper no longer uses auctions: Instead, each listing
has a �posted price,�or Prosper�determined pre�set rates, which are based on the borrowers�credit risk. During our
sample period (May 2008 to December 2008), the terms of the loan and the match between borrowers and lenders
were determined through auctions.

7The listing remains active for 7 days. For �closed�listings, the listing becomes inactive after 7 days or after the
listing attracts enough lenders to fund the whole loan, whichever occurs �rst (unless the borrower withdraws). For
�open�listings, the listing remains active for 7 days even after the requested amount is fully funded. Since less than
one-fourth of the listings are closed listings, we work only with open listings in our sample. We also limit our sample
to listings that were not withdrawn.

8Prosper charges fees to both borrowers and lenders only if the loan originates. See Freedman and Jin (2010) for
details.
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veri�ed by Prosper.9 Other information, such as debt�to�income ratio and purpose of the loan, is

provided by the borrower without veri�cation by Prosper. Finally, a feature of the listing that is

important for our analysis is the reserve interest rate, which the borrower can choose. The reserve

interest rate is the maximum interest rate the borrower is willing to accept, and it plays a similar

role to that of the reserve price in regular auctions. The requested loan amount and the reserve

interest rate are both variables that the borrower chooses, subject to Prosper�s conditions and state

usury laws.10

2. Lenders Bid Prosper maintains a list of active listings on its Web site for potential

lenders. Each listing contains information we described above as well as the active interest rate

and the fraction of the loan funded. The active interest rate corresponds to the marginal bid in

multi-unit auctions.11 The fraction of the loan funded is just the ratio of the total amount of

submitted bids to the requested loan amount. We will explain what the active interest is in more

detail below.

The set of potential lenders are those who have registered with Prosper as lenders. If a lender

�nds a listing to which she wishes to lend money, she may then submit a bid on the listing, similar

to a proxy bid in online auctions. Each bid consists of an amount that the lender is willing to lend

(typically a small fraction of the loan amount that the borrower requests), and a minimum interest

rate that the lender is willing to accept. The lender can submit a bid with an amount anywhere

between $50 and the borrower�s requested amount, but the modal bid amount is $50. The bidding

is similar to other online auctions such as eBay auctions, in the sense that the lender can bid on

any active listing at any time.

9A credit grade of AA corresponds to a credit score of 760+, a grade of A corresponds to 720�759, B to 680�719, C
to 640�679, D to 600�639, E to 540�599, and HR to 540�. The numerical credit score is not listed. These de�nitions
of the credit grades were used throughout our sample period, but Prosper made changes to the de�nitions of the
credit grades in July of 2009.
10The minimum loan amount was $1,000 and the maximum amount was $25,000. Regarding the interest rate,

before April 15, 2008, it was capped by the usury law of the state in which the borrower resided. After April 15,
2008, the interest rate cap was uniformly set at 36% across all states in our sample. See Rigbi (2011) for more
information.
11For fully funded listings, the active interest rate corresponds to the marginal bid in multi-unit auctions as described

in the main text. For listings that have not been fully funded, the active interest corresponds to the borrower�s reserve
interest rate.
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3. Funding Decision The auction used in Prosper is similar to a uniform�price auction with

a public reserve price. Using an example, we explain below how the terms of the loan are determined

and which lenders end up lending. Suppose a borrower creates a listing with a requested amount

of $10,000 and a reserve interest rate of 25%. Then, Prosper adds the listing to the set of currently

active listings that are displayed to potential lenders for a period of 7 days. Potential lenders who

are interested in lending money can bid on the listing during this period. For simplicity, let us

assume that the lenders can submit a bid amount of only $50. At the time the lender submits her

bid, she observes the fraction of the loan funded.12 For listings that have yet to attract enough

bids to reach the requested amount (i.e., less than 200 bids in this example; see left panel of Figure

1) that is all she observes. In particular, she does not observe the interest rate of each bid. As

for listings that have already received enough bids to cover the requested amount, (i.e., more than

200 bids, see right panel of Figure 1) the lender observes the active interest rate, which is the

interest rate of the marginal bid that brings the supply of money over the requested amount. In

our example, this corresponds to the interest rate of the 200th bid when we order the submitted

bids according to their interest rate, from the lowest to the highest. Moreover, for fully funded

listings, the lender also observes the interest rate of the losing bids, i.e., the interest rate of the

201st bid, 202nd bid, and so on. However, the lender does not observe the interest rate of the bids

below the marginal bid.

At the end of the bid submission period, listings that have attracted more bids than is necessary

to fund the full requested amount are funded.13 However, there are no partial loans for listings that

have failed to attract enough bids to fund the total requested amount. In the �rst panel of Figure 1,

a listing would not be funded even though $8,000 out of $10,000 has been funded. As for funded

listings, the interest rate on the loan is determined by the marginal bid, and the same interest

rate applies to all the lenders. In the second panel of Figure 1, the listing is funded at 24.8% and

the same rate applies to all lenders who submitted bids below 24.8%. In this sense, the auction is

similar to uniform�price auctions.

12More precisely, the lender also has access to the bid amount for each of the submitted bids as well as the number
of submitted bids.
13A potential borrower may withdraw his listing at any time until the end of the bid submission period. Once the

funding decision is made, however, the borrowers may not withdraw.
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4. Loan Repayments All loans originated by Prosper are unsecured and have a �xed loan

length of 36 months. The borrower pays both the principal and the interest in equal installments

over the 36�month period.14 If a borrower defaults, the default is reported to the credit bureaus, and

a third�party collection agency is hired by Prosper to retrieve any money from the borrower. From

the perspective of the borrower, defaulting on a loan originated by Prosper is just like defaulting

on any other loan, resulting in a damaged credit history.

2.2 Data

The data for our analysis come directly from Prosper.com. The dataset is unique in the sense that

virtually all the information available to potential lenders as well as the ex-post performance of the

loans are observed to the researcher. We have data on the borrower�s credit grade, debt�to�income

ratio, home ownership, etc., and additional text information that borrowers provide to lenders.15

We retrieved the data from the Web site of Prosper.com in January of 2012. Our data consist of

all listings that were created from May to December of 2008 (and the corresponding loan repayment

data for funded listings which go until the end of 2011).16 Note that all loans in our sample have

either matured or have ended in default. From this sample, we drop observations that were either

withdrawn by the borrower, cancelled by Prosper, or missing parts of the data.1718 We also dropped

closed listings. We are left with a total of 35,241 listings, of which 5,571 were funded. Below, we

report some summary statistics.

14There is no penalty for early payment: early repayments go directly into paying o¤ the principal. If a borrower�s
monthly payment is more than 15 days late, a late fee is charged in addition to the principal and the interest.
15The only piece of information missing is the conversation that takes place between borrowers and potential lenders

through the Prosper Web site.
16We use data from this period because there were substantial institutional di¤erences across states before April

2008, such as interest rate caps. We use observations from April 2008 only, in order to work with a cleaner data
set. Second, Prosper entered into a settlement with state securities regulators over sales of unregistered securities on
December 1, 2008. As a result, Prosper stopped originating new loans until July 2009. Hence, we have no observations
from December 2008 to June 2009. Lastly, Prosper made changes to the minimum bid amount from $50 to $25 and
also changed its de�nition of the credit grades after its relaunch in July 2009. Hence we drop the observations after
July 2009.
17About 27% of the listings that are created are later withdrawn. Most of the withdrawals occur immediately after

the creation of the listing. Conditional on withdrawal, 78% are withdrawn within one day. This is probably due to
some mistake the borrower found in the listing, which he subsequently wanted to correct, or to creating a listing and
then deleting it just to learn how to use the system. Thus we do not think that withdrawals occur as a response to
borrowers seeing an unexpectedly high interest rate just before origination. Moreover, given that submitting a lower
reserve interest rate tends to lower the contract interest rate, it is suboptimal for borrowers to submit a reserve rate
above the rate at which they are willing to borrow. Hence we do not think that dropping withdrawn listings creates
any severe sample�selection issues.
18We also dropped listings registered in Texas because a di¤erent interest rate cap was used for Texas.
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Summary Statistics of Listings Table 1 reports sample statistics of the listings by credit

grade. The mean requested amount is reported in the �rst column of the table, and it ranges from

a high of more than $13,000 dollars for AA listings to a low of less than $5,000 for HR listings.

The average among the whole sample is $6,603. In columns 2 through 4, we report the average

reserve interest rate, the debt-to-income ratio, and the home�ownership status by credit grade. In

column 5, we report the bid count, which is the average number of bids submitted to a listing, and

in column 6, we report the funding probability. By and large, the characteristics of the loans are

related to the credit grade in the expected way.

In Figure 2, we present the distribution of the reserve rate across di¤erent credit grades. As

expected, the reserve rate is higher for worse credit grades and lower for better credit grades. One

important thing to note is that there is a spike at 36% for credit grades B and below. This is

because 36% was the usury law maximum for our sample. In particular, note that for credit grades

D and below, there is little variation in the reserve rate. As the main focus of our analysis is

on the reserve rate and the extent to which it can be used as a signal of the creditworthiness of

the borrower, variation in the reserve rate is crucial for our analysis. The fact that there is little

variation in the reserve rate of the listings for credit grades D and below implies that listings in

these categories are not very informative about the signaling value of the reserve interest rate. As

a consequence we focus on the results from the top four credit grades in presenting some of our

results below.

Summary Statistics of Bids In Figure 3, we report the distributions of the bid amount,

again by credit grade.19 The fraction of lenders who bid $50 exceeds 70% across all credit grades,

and the fraction of lenders who bid $100 is more than 10% in all credit grades. Hence, more than

80% of lenders bid either $50 or $100. We also �nd that a small fraction of lenders bid $200, but

rarely beyond that. These observations motivate us to formulate the potential lenders� amount

choice as a discrete�choice problem in our model section, where lenders choose from f$50; $100,

and $200g rather than from a continuous set.

19The sample of bids used to create Figure 3 consists of only the �nal bids for each bidder, i.e., if a potential lender
bids more than once in a listing, only the last bid is used.
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Summary Statistics of Loans (Funded Listings) Table 2 reports sample statistics of

listings that were funded, which is a subset of the full set of listings. As in Table 1, we report the

mean requested amount (loan amount), reserve rate, contract interest rate, debt�to�income ratio,

home�ownership status, and bid count in columns 2 through 7 by credit grade. We note that the

mean loan amount reported in Table 2 is smaller than the mean requested amount shown in Table

1, which is natural given that smaller listings need to attract a smaller number of bids in order

to get funded. Also, note that the average bid count in Table 2 is higher than in Table 1, for the

obvious reason that listings need to attract su¢ cient bids to get funded.

Summary Statistics of Repayments For each loan originated by Prosper, we have monthly

data regarding the repayment decisions of the borrower, i.e., we observe whether the borrower repaid

the loan or not every month, and whether the borrower defaulted.20 In Table 3, we report sample

statistics regarding the default probability and the timing of default conditional on default. The

�rst column reports the default probability by credit grade. Note that all loans in our sample have

either matured or have ended in default. The average default probability is lowest for AA loans at

14.9%, while it is highest for HR loans at 43.9%. The second column reports the average time until

default, which is 17.5 months for the full sample. In columns 4 through 8, we report the quantiles.

Summary Statistics of Internal Rate of Return Finally, we report the internal rate of

return (IRR) for the loans originated by Prosper in Table 4.21 The average IRR for all listings

is -4.6%, and it is negative in all credit grades except grade E, whose average IRR is 0%. The

IRR for our sample period is generally low. These low returns may re�ect the fact that default

rates on loans were generally very high after the economic downturn during the �nancial crisis.22

20Prosper records loans that are more than 4 months late as �charge o¤.�There are exceptions where the loans are
kept on Prosper�s books even after being late for 4 months. Our de�nition is the same as Freedman and Jin (2010).
21 If we denote the (monthly) IRR by R, then R is the interest rate that equalizes the loan amount to the discounted

sum of the stream of actual monthly repayments, i.e.,

Loan Amount =
TX
t=1

t-th Monthly Payment
(1 +R)t

.

In Table 4, we report the annualized IRR.
22There is evidence that loans originated after the end of our sample seem to be doing better. Using the subset of

loans that originated right after Prosper resumed operation in 2009, we �nd that the average IRR was 1.1%, which is
signi�cantly higher than �4:6%. Moreover, this 1.1% estimate is conservative because some lenders had not �nished
repaying by the day we retrieved our data.
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It may also re�ect the fact that lenders were not fully aware of the creditworthiness of the pool

of borrowers on Prosper.23 We will revisit these issues when we discuss our model of lenders in

Section 4.2.24

The standard error of IRR for grade AA is 0.283, and it monotonically increases as the credit

grade becomes worse, i.e., loans to lower credit grade borrowers involves higher risk with a larger

variance. Table 4 also reports the quantiles of IRR for each credit grade. Note that the median

IRR is very high compared to the mean, rainging from 8.2% (grade AA listings) to 24.9% (for grade

E listings).

3 Evidence of Signaling Through the Reserve Rate

In this section, we provide some evidence that the borrower�s reserve interest rate serves as a

signaling device. In our �rst set of regressions, we examine the e¤ect of the reserve rate on the

funding probability as well as its e¤ect on the contract interest rate, conditional on being funded.

In our second set of regressions, we examine whether there are any systematic di¤erences between

those who post high reserve rates and those who post low reserve rates.

Funding Probability and Contract Interest Rate In order to analyze the e¤ect of the

reserve rate on the funding probability, we run a Probit model as follows:

Fundedj = 1f�ssj + x0j�x+"j � 0g; (1)

where Fundedj is a dummy variable for whether listing j is funded or not, sj is the reserve rate, xj is

a vector of controls that include the requested amount, the debt�to�income ratio, dummy variables

for home ownership, the credit grade, and other variables,25 and "j is an error term following a

standard Normal distribution. In alternative speci�cations, we included more covariates, such as

calendar month, hour of day the listing was created, and other borrower characteristics. The results

of these alternative speci�cations (contained in the Supplementary Material) are broadly consistent

23Freedman and Jin (2010) study lender learning where lenders learn about the creditworthiness of borrowers over
time.
24 In our estimation, we impose rational expectations of lenders (i.e., we assume that lenders�beliefs regarding the

IRR and the realized IRR coincide on average) but we check the robustness of our results to alternative beliefs.
25Other variables include the calendar month and the hour of day the listing was created.
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with the results we report below.26

The �rst column of Table 5 reports the results of this regression. The coe¢ cient that we

are interested in is the one on the reserve rate. As reported in the �rst row, the coe¢ cient is

estimated to be 2:13, and it is statistically signi�cant. This implies that the higher the posted

reserve interest rate, the more likely a listing is to be funded, even after controlling for observed

listing characteristics. In the second row, we report the estimated coe¢ cient on the requested

amount, which is one of the control variables included in xj in (1). The coe¢ cient is negative and

statistically signi�cant, which is natural given that listings with a large requested amount must

attract many lenders to get funded.27

Next, we run the following Tobit regression to examine the e¤ect of the reserve rate on the

contract interest rate:

r�j = �ssj + x
0
j�x+"j , (2)

rj =

8><>: r�j if r�j � sj

missing otherwise
.

In this expression, rj denotes the contract interest rate, r�j is the latent contract interest rate, xj

is the same vector of controls as before, and "j is a Normally distributed error term. The �rst

equation relates the latent contract interest rate to the reserve rate and other characteristics. The

second equation is the selection equation, which accounts for the fact that the contract interest

rate rj is always less than the reserve rate, sj . The interpretation of this Tobit speci�cation is that

r�j is the (latent) interest rate at which the loan is funded in the absence of any censoring. Note

that if we were to run an OLS regression of rj on sj and xj , the estimate of �s would be biased

upwards because the mechanical truncation e¤ect would also be captured in �s.
28

26We also ran the speci�cation separately for each credit grade. The results are also consistent with our �ndings.
The estimates are available upon request.
27 In a study of subprime lending in used�car markets, Einav, Jenkins, and Levin (2012) �nd that the loan size can

be used to screen the borrower�s unobserved type. It is possible that the negative coe¢ cient on the request amount
that we �nd here may re�ect an underlying relationship between the requested amount and the creditworthiness of the
borrower, as discussed in their paper. While we do not explicitly model the borrowers�choice regarding the request
amount and how it is related to the borrowers�type in our structural analysis, our identi�cation and estimation allow
for the possibility that the borrowers�type distribution depends on the request amount in an arbitrary manner. We
come back to this point below.
28Even if sj had no causal e¤ect on r�j , rj and sj will have a positive correlation because the contract interest rate

is observed only if r�j � sj . To see this, assume that r�j and sj are independent, and consider any sj and s0j , (sj < s0j).
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We report the results from this regression in the second column of Table 5. As before, the

coe¢ cient that we are interested in is the one on the reserve rate, which measures how the reserve

interest rate a¤ects the contract interest. As reported in the �rst row, this coe¢ cient is estimated

to be positive and signi�cant. Hence, posting a lower reserve interest rate leads to a lower contract

interest rate conditional on the observable characteristics and net of the censoring e¤ect, which

is consistent with our hypothesis. Note that it is possible to give an alternative interpretation of

these results from the perspective of the lenders. As we discuss in the next section, borrowers

who post high reserve rates are relatively less creditworthy. If we take this as given, then another

interpretation of the results of regression (2) is that lenders are charging higher interests to riskier

borrowers, who post high reserve rates.

In addition to the Tobit model above, we also estimated a censored quantile regression model

(see, e.g., Powell, 1986) using the same speci�cation as equation (2). The quantile regression allows

us to test whether a similar relationship between r�j and sj that we �nd holds for di¤erent quantiles.

The results of the quantile regressions were qualitatively similar. These results seem to imply that

F (r�js) �rst order stochastically dominates F (r�js0) for s � s0.29

The two types of regressions that we ran suggest that a borrower faces a trade-o¤ in setting the

reserve price, i.e., the borrower must trade-o¤ the increase in the probability of acquiring a loan

with the possible increase in the contract interest. Given that there exists considerable dispersion

in the reserve rate, it is natural to think that there is unobserved borrower heterogeneity that

induces borrowers to weigh the trade-o¤ di¤erently. For example, if borrowers are heterogeneous

with respect to the cost of obtaining credit from outside sources, borrowers who have low cost will

tend to post low reserve rates, while those who have high cost will post high reserve rates, giving

rise to dispersion in the reserve rate.

Then we have

Frj (tjsj) =
Frj (tjs0j)
Frj (sj js0j)

for t 2 [0; sj ]

and
Frj (tjsj) = 1 > Frj (tjs

0
j) for t 2 [sj ; s0j ]

where Frj (�jsj), and Frj (�js0j) are the conditional distributions of rj given sj and s0j . This means that Frj (�js0j) �rst
order stochastically dominates Frj (�js0j), which implies that rj and sj have a mechanical positive correlation.
29The results are available upon request.
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Repayment Behavior and Reserve Interest Rate We now explore the extent to which

borrowers who post high reserve rates are similar to or di¤erent from those who post low reserve

rates in terms of their ability to pay back. In order to do so, we �rst run a panel Probit of an

indicator variable for default on observable characteristics of the loan as well as the reserve rate:

Defaultjt = 1f�ssj + �rrj + x0j�x + �t + �j + "jt � 0g, (3)

where Defaultjt denotes a dummy variable that takes a value of 1 if borrower j defaults on the

loan at period t, sj denotes the reserve rate, rj denotes the contract interest rate, xj is a vector of

control variables, �t is a period-t dummy, �j is a borrower random-e¤ect and "jt is a random error

following a Normal distribution. The coe¢ cient �s captures the relationship between the reserve

interest rate and the default probability. Note that because we control for the contract interest rate

in the regression as well as other observable loan characteristics, the e¤ect captured by �s is purely

due to selection. In other words, given that the reserve rate does not directly a¤ect the behavior

of the borrower once we condition on the contract rate, we do not need to be concerned that �s is

picking up the e¤ect of moral hazard. Thus, �s captures only the adverse selection e¤ect, i.e., the

heterogeneity in the creditworthiness among borrowers who posted di¤erent reserve rates.

The parameter estimates obtained from this regression are shown in the �rst column of Table 6.

The coe¢ cient associated with the reserve interest rate is positive and signi�cant, with �s = 1:54.

This implies that borrowers who post higher reserve interest rates tend to default more often, which

is consistent with the notion that the reserve rate reveals the type of the borrowers, i.e., the reserve

interest rate can be used as a signal of the creditworthiness of the borrower. On the �rst column

of Table 6, we also report our estimates of the coe¢ cient on the contract interest rate and the

coe¢ cient on the requested amount. We �nd that both coe¢ cients are positive and statistically

signi�cant. The positive coe¢ cient on the contract interest rate may be capturing moral hazard

�higher interest tends to increase the probability of defaulting. The positive coe¢ cient on the

amount can be a result of either adverse selection or moral hazard.30

30Borrowers who request a bigger loan may be less creditworthy, or a bigger loan may induce borrowers to default
more often because of higher interest payments. The former explanation would be consistent with adverse selection,
and the latter would be consistent with moral hazard. The borrower�s choice of the loan size is an interesting issue,
but it is hard to tease out moral hazard and adverse selection. That is one reason why our paper focuses on the
borrower�s choice of the reserve rate. (Note, however, that we are not ruling out the possibility that the loan amount
can also be a signal. See sections 4.1 and 5.1 for more details.) For an analysis of the loan size and down payment in
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We now wish to examine how the reserve rate relates to the borrower�s repayment behavior

from the perspective of the lender. In order to do so, we analyze how the IRR is related to the

reserve interest rate by estimating the following model:

IRRj = �ssj + �rrj + x
0
j�x + "j , (4)

where IRRj is the internal rate of return of loan j and xj is the same vector of observable charac-

teristics as before. The coe¢ cient on sj captures the relationship between the reserve rate and the

IRR. As with our discussion of regression (3), the coe¢ cient on sj captures the selection e¤ect.

The parameter estimates obtained from this regression are shown in the second column of

Table 6. As expected, the reserve interest rate has a negative and signi�cant e¤ect on the IRR

(�s = �0:59), which indicates that on average, lenders make less money on loans that are made to

borrowers who posted high reserve interest rates. This is consistent with the results of regression

(3), where we examined the relationship between rj and the default probability.

Finally, we run the following hazard model to examine the e¤ect of the reserve rate on the

default timing. Speci�cally, we estimate the Cox�s proportional hazard model as follows:

�(tj j (sj ; rj ;xj) ;�) = �0(tj) exp(�ssj + �rrj + x0j�x); (5)

where tj denotes the period at which borrower j defaults, and �0(t) is the baseline hazard function.

As in the regressions above, we control for the same set of observable characteristics of the loan.

The third column of Table 6 reports the parameter estimates of the regression. Our estimate

of �s, which captures the relationship between the hazard rate and the reserve rate, is positive

and statistically signi�cant. The results of this regression corroborate our previous �ndings that

borrowers with higher reserve rates tend to default more often.

Interpretation of the Results Taken together, our regression results seem to indicate that

(1) there is a trade-o¤ in setting the reserve rate, i.e., a trade-o¤between a larger funding probability

and a higher contract interest rate; (2) borrowers are heterogeneous with respect to how they

the context of subprime lending in used�car markets, see Adams, Einav, and Levin (2009) and Einav, Jenkins, and
Levin (2012).
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evaluate this trade-o¤; (3) those who post high reserve rates tend to be relatively creditworthy

and those who post low reserve rates tend to be relatively less creditworthy; and (4) the lenders

anticipate this and charge a higher interest to riskier borrowers who post high reserve rates. These

results are informative about how signaling is sustained in equilibrium: �high cost� types, who

have high cost of borrowing from outside sources are more willing to sacri�ce a favorable interest

rate for a bigger probability of being funded, while the opposite is true of the �low cost� types.

Because borrowers who post high reserve rates default relatively more often than borrowers who

post low reserve rates, �high cost�types are also less creditworthy while �low cost�types are more

creditworthy. Hence borrowers who are �low cost� and creditworthy prefer (high interest, high

probability of receiving a loan) to (low interest, low probability of receiving a loan), and vice versa

for borrowers who are �high cost�and less creditworthy. This prevents �bad�types from mimicking

�good�types and sustains separation of types through signaling.

In the supplementary material, we check the robustness of the results. We examine other

speci�cations and add more variables. In particular, we include more variables on the borrower�s

credit information, such as the number of current delinquencies and the number of current credit

lines. Furthermore, we control for other borrower�provided information (i.e., stated purpose of the

loan, the title of the listing, description of the borrower, etc.). While the accuracy of some of these

additional variables is not veri�ed by Prosper.com, it might transmit some information about the

borrower�s creditworthiness.31 Overall, we �nd that the results we obtain are qualitatively similar

to our baseline results.

4 Model

In this section, we develop a model of the borrowers and the lenders who participate in Prosper,

which we later take to the data. Our model of the credit market and the estimated primitives

allow us to go beyond providing evidence of signaling and answer questions regarding welfare and

market design. For example, in our counterfactuals, we compare what the credit supply curve looks

like when borrowers can signal, when borrowers cannot signal (i.e., pooling), and when there is no

31Ravina (2008) augments the Prosper data with additional data on the perceived attractiveness of the photo of
the lender. Iyer et al. (2009) use the actual credit scores in their analysis. They both report a statistically signi�cant
e¤ect of the reserve rate on various loan outcomes (see Table IV of Ravina, 2008, and Table 5 of Iyer et al., 2009).
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information asymmetry.

Our model has three parts. The �rst part of our model concerns the reserve interest rate choice

of the borrowers. The key element of this part of the model is how borrower heterogeneity interacts

with his choice of the reserve interest rate. Each borrower is heterogeneous with respect to the

ease with which he can borrow money from alternative sources and also his repayment ability. This

heterogeneity among the borrowers interacts with the choice of the reserve rate, because di¤erent

types di¤erentially evaluate the trade-o¤ between lower interest and higher probability of obtaining

a loan.

The second part of our model concerns the lenders�bidding behavior. The allocation and the

contract interest rate are determined through an auction that is similar to a uniform�price auction.

We model the lenders to be heterogeneous with regard to their attitude toward risk. The lenders

decide whether to bid or not and what to bid. A bid consists of an amount and an interest rate,

i.e., how much money the lender is willing to lend and at what interest rate.

The third part of our model pertains to the borrowers� repayment behavior. We model the

repayment decision as a �nite horizon dynamic programming problem. At each period, the borrower

chooses whether to pay back the loan or default, depending on whether the disutility from paying

back outweighs the disutility from default.

4.1 Borrowers

Borrower Repayment We �rst describe the repayment stage of the borrower�s decision

problem and work our way backwards. We model the repayment behavior of the borrower as a

sequential decision of 36 (= T ) months, which is the length of the loans that Prosper originates.32

We write the terminal decision of the borrower at period T as follows:

8><>: full repayment: if uT (r) + "T � D(')

default: otherwise,
(6)

32Of all loan repayments, about 4% were �early repayments,� in which the borrower paid more than 50% of the
regular monthly loan repayments. We abstract from modeling early repayments because they unnecessarily complicate
our model. The relevant information in the data that we use for estimating the model of the borrowers is the timing
of default. We assume that the borrower has made regular repayments until default.
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where uT (r) + "T denotes the period utility of the borrower if he repays the loan in full and r

denotes the interest rate on the loan.33 We let ' denote the (unobservable) type of the borrower,

which shifts the cost of defaulting, and we let D(') denote the cost of defaulting. We assume ' to

be independent of "T , condiotional on observables. The conditional independence of "T and ' may

be a strong assumption, but we come back to this point below. Note that we assume without loss

of generality that D(') is monotonically decreasing in ', i.e., the disutility of defaulting is larger

for borrowers with higher '.34 Hence borrowers with high ' are �good�types who value avoiding

default and maintaining a good credit history.

Now let VT denote the expected utility of the borrower at the beginning of the �nal period T ,

de�ned as VT (r; ') = E[maxfuT (r) + "T ; D(')g]. Then, the decision of the borrower at period

t < T is as follows: 8><>: repayment: if ut(r) + "t + �Vt+1(r; ') � D(')

default: otherwise,

where ut(r) + "t is the period t utility of repaying the loan, � is the discount factor, and Vt+1(r; ')

is the continuation utility, which can be de�ned recursively. We assume f"tg to be independent and

identically distributed across t and instead allow ut to depend on t to capture any deterministic

time dependence. We discuss below the implications of assuming that f"tg are independent.

We will now make a few remarks concerning our speci�cation. Our �rst remark is related to

the interpretation of '. In our speci�cation, the unobservable type of the borrower is modeled as

default cost. However, we could write an alternative model that is isomorphic to our current model,

where ' has the interpretation of unobserved income/assets of the borrower.

To see this, consider the following alternative speci�cation:

full repayment, ~uT (~'+ !T � repayment) + ~"T � 0,
33Actually, being behind on loan payments by one month does not automatically imply that Prosper records the

borrower as defaulting. The borrower is charged a late fee instead. Usually there is a three�month lag between the
�rst missed payment until the loan is charged o¤ by Prosper as a default. For our estimation, we de�ned the month
of default as the �rst month of consecutive missed payments which subsequently result in default. While it is possible
to consider an alternative model of the borrower that incorporates the number of months the borrower is behind
schedule, this comes at a signi�cant increase in computation (we need to track the number of months late as a state
variable). Given that once the borrower misses a payment, the probability of ending up in default is considerable
(more than 85%), we think that the results will not be a¤ected very much by our simplifying assumption.
34We can always rede�ne ' so that D(') is monotonically decreasing.
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where ~'+!T is now the (unobserved) income/assets of the borrower with a persistent component,

~', and a transitory component, !T . The problem of the borrower for t < T is de�ned analogously.

Now rearranging terms in the previous expression and using the fact that the repayment is equal

to the interest multiplied by the loan amount, (r � amt),35 we obtain

full repayment, �(r � amt)� ~u�1T (�~"T ) + !T � �~'.

Note that if we rede�ne uT and D in equation (6) as uT (r) = �(r � amt), "T = !T � ~u�1T (�~"T ),

and D(~') = �~', then the two speci�cations are equivalent. Regardless of the source of unobserved

heterogeneity that a¤ects the propensity to default �whether it be default cost, income, or some

combination of the two �the resulting speci�cation will be similar and the di¤erence will be only

in the interpretation of '. For our purposes, the source of heterogeneity among the borrowers is

not very relevant either, as borrower heterogeneity is structural to our counterfactual policy in our

view. This is not to say, however, that the distinction may be very important in other contexts.

Our second remark concerns the independence assumption of "t and '. While independence is

a restrictive assumption, we note that mean independence of "t, i.e., E["tj'] = 0, is without loss of

generality. This is because we can always rede�ne "t as "t � E["tj'] and D(') as D(') � E["tj'],

which will result in E["tj'] = 0. Of course, mean independence is not the same as independence of "t

and ', but it does give some credibility to the independence assumption. Relatedly, we only require

independence "t and ' conditional on listing characteristics. Conditional independence is a weaker

assumption because it allows for "t and ' to be correlated unconditionally. The independence

assumption greatly enhances the tractability of the model.

Our third remark is related to the independence of f"tg across t. Note that what we observe in

the data are a sequence of binary decisions (repay or default) for each borrower, in which default

is an absorbing state: If a borrower defaults, we do not observe any repayment decisions from

that point on. Unlike in a situation where there are distinct decisions for each of the T periods

(i.e., no absorbing state), our particular data structure precludes us from identifying possible serial

correlation in f"tg. Only the marginals of f"tg are relevant for data generation. This implies

that there is a model with independent f"tg that is observationally equivalent to a model with
35The interest rate r used to compute the repayment amount is di¤erent from the contract interest rate determined

at the end of the auction because of compounding and amortisation.
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serially correlated f"tg. While this may appear to be a limitation, there is a sense in which it

is not important for our purposes. This is because the distribution of f"tg is exogenous to our

counterfactual policy experiments in our view.

Finally, we have presented the model up to now without making explicit the dependence of the

primitives of the model on observable borrower/listing characteristics. This is purely for exposi-

tional purposes. In our identi�cation and estimation, we let ut, F"t , and F' depend on observable

characteristics. In particular, we allow F"t and F' to depend on observable characteristics in an

arbitrary manner in our identi�cation. One important consequence of this is that we are allowing '

to be (arbitrarily) correlated with the requested amount. This means that we are allowing for the

possibility that there are other mechanisms besides the reserve price through which the borrower

can signal their type (e.g., through the requested amount), although we do not explicitly model

this.

Borrower Reserve Rate Choice Next we describe our model of the borrower�s reserve

interest choice. When the borrower determines the reserve interest rate, s, he has to trade o¤ the

e¤ect of s on the probability that the loan is funded, and the e¤ect of s on the contract interest

rate, r. Recall from the previous section that increasing s tends to increase the funding probability

while increasing the contract interest rate. The borrower�s problem is then to choose s, subject to

the usury law limit, as follows:

max
s�0:36

V0(s; ') = max
s�0:36

�
Pr(s)

Z
V1(r; ')f(rjs)dr + (1� Pr(s))�(')

�
, (7)

where Pr(s) is the probability that the loan is funded, f(rjs) is the conditional distribution of the

contract interest rate given s, and �(') is the borrower�s utility from the outside option, i.e., the

borrower�s utility in the event of not obtaining a loan from Prosper. We suppress the dependence

of Pr(s) and f(rjs) on the characteristics of the borrower, e.g., requested amount, and credit grade.

Although Pr(s) and f(rjs) are equilibrium objects, they are known and taken as exogenous by the

borrower. The usury law maximum during the sample period was 36%, and this is re�ected in the

choice set of the borrower. While this restriction is rarely binding for high credit grade borrowers,

it is binding for many borrowers in lower credit grades (see Figure 2).
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The �rst term in the bracket in equation (7) captures the borrower�s expected utility in the event

of obtaining a loan through Prosper: V1(r; '), which is the value function of the borrower at period

t = 1 (Vt=1 �see previous subsection) when the contract interest rate is r, is integrated against

the distribution of the contract interest rate f(rjs). The second term in equation (7) captures the

utility of the borrower in the event the loan is not funded: (1� Pr(s)) is the probability that this

event occurs, which is multiplied by the utility of the outside option, �('). We assume that �(')

is increasing in ', where ' is the private type of the borrower we de�ned earlier, which shifts the

disutility of default. This assumption simply re�ects the idea that �good� types (high '), who

value their credit history, for example, have an easier time obtaining a loan from outside sources,

such as relatives, friends, and local banks, etc., and hence have a high �('). On the other hand,

�bad� types, with low cost of default, e.g., borrowers who have a damaged credit history or are

expecting to default in the future anyway, are likely to have only limited alternative sources of

funding, and hence have a low �(').

Now we make two remarks. In addition to the reserve interest rate, an important variable that

the borrower needs to optimize over is the requested amount. We do not explicitly model the

amount choice of the borrower and instead focus only on the reserve rate choice. It is worth noting

that even when the borrower needs to optimize over the requested amount, borrowers still choose

the reserve rate in accordance with equation (7). That is, regardless of the amount the borrower

chooses to request, the borrower must still optimize over the reserve interest rate in accordance

with equation (7). All of our model and estimation can be described conditional on the requested

amount, hence the results we obtain are robust to this abstraction. Our second remark concerns

our speci�cation of �. Our speci�cation above imposes a deterministic relationship between the

default cost, D('), and the outside option, �('). This is not necessary, however. We can introduce

an individual shock by specifying � as �('+ �), where � is independent of '. As we discuss in our

identi�cation section, this alternative model turns out to be isomorphic to our baseline model in

which � depends just on '.

The �rst�order condition associated with problem (7) is as follows,

@

@s
V0(s; ') =

@

@s
Pr(s)

�Z
V1(r; ')f(rjs)dr � �(')

�
+ Pr(s)

Z
V1(r; ')

@

@s
f(rjs)dr = 0, (8)
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for an interior solution. The �rst�order condition captures the two trade-o¤s that the borrower

faces in determining the reserve interest. The �rst term is the incremental utility gain that results

from an increase in the funding probability, and the second term is the incremental utility loss

resulting from an increase in the contract interest rate.

Recall from the previous section that we found strong evidence that Pr(s) is increasing in s and

that F (rjs) �rst order stochastically dominates F (rjs0) for s � s0, where F (rjs) is the conditional

CDF of r. We note that under these conditions, the single crossing property (SCP) is satis�ed

for s < 0:36, i.e., @
@'

�
@
@sV0(s; ')

�
< 0. From the perspective of the borrower, SCP is necessary

and su¢ cient to induce separation. Hence there is no pooling among types below the usury law

maximum (i.e., 36%) and pooling occurs only at the maximum. We state this as a proposition

below.

Proposition 1 If @
@s Pr(s) > 0 and F (rjs) FOSD F (rjs

0) for s0 > s, then we have SCP, i.e.,

@2

@s@'
V0(s; ') =

@2

@s@'

�
Pr(s)

Z
V1(r; ')f(rjs)dr + (1� Pr(s))�(')

�
< 0.

To see the intuition for why SCP holds, consider the marginal utility from increasing s, @@sV0(s; '),

for a given type '. The claim of Proposition 1 is that this marginal utility is a decreasing function

of '. As we explained in our discussion of expression (8), @
@sV0(s; ') has two components. One

is the incremental utility gain from an increase in the funding probability, and the other is the

incremental utility loss resulting from an increase in the contract interest rate. The �rst compo-

nent is decreasing in ', because borrowers with high ' already have a high outside option �these

borrowers do not appreciate the increase in the funding probability as much as low�' types. The

second component is also decreasing in ', because borrowers with high ' are likely to bear the full

cost of an increase in r, while borrowers with low ' will not �the low�' types will default with

high probability anyway.36 A formal proof is contained in the Appendix.

Before turning to the lenders�model, we brie�y discuss the optimal reserve rate choice of the

borrowers when the usury law limit is binding. Note that the condition in Proposition 1, (Pr(s) is

increasing and F (rjs) FOSD F (rjs0) (s � s0)) guarantees that SCP is satis�ed for s < 36%; that

is, SCP holds for reserve rates strictly below the usury law maximum. Recall from our previous

36Conditional on default, the borrower does not have to bear the full cost of a high interest rate.
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discussion of Figure 2 that the usury law maximum of 36% is rarely binding for borrowers with a

credit grade of AA or A. This means that even though the conditions in the proposition guarantees

SCP only for s < 36%, these conditions are su¢ cient for separation of types for markets with credit

grades AA and A, given that there is almost no bunching at 36% for these markets.

In contrast, recall from our previous discussion of Figure 2 that for credit grades B and C,

there is a non-negligible mass at exactly 36%, implying that the usury law maximum is a binding

constraint for many. For these two credit grades, the pattern in the data seem broadly consistent

with partial pooling. For there to be partial pooling (i.e., pooling at 36% and separation occurring

anywhere below 36%), we need an extra condition to hold (in addition to the requirements in

Proposition 1) that prevents the pooled types from deviating. We describe these conditions in the

Appendix. For these two credit grades, we will use them in our estimation accounting for the fact

that there is separation of types below 36%, and some pooling at 36%. Finally, as for credit grades

D and below, there is little variation in the reserve interest rate, which means that data from these

categories are not very informative about the signaling value of the reserve rate. Hence in our

estimation, we focus on the analysis only of credit grades AA, A, B, and C.

4.2 Lenders

In this subsection, we describe the model of the lenders. Let N be the (random) number of potential

lenders who view a particular listing on Prosper�s Web site. We let FN denote its cumulative

distribution function with support f0; 1; � � � ; �Ng, where N is the maximum number of potential

lenders. The potential lenders are heterogeneous with regard to their attitude toward risk and

with regard to their opportunity cost of lending. Each potential lender who observes a listing on

Prosper then decides whether to submit a bid or not and what to bid if she does, where a bid is an

interest-amount pair. At the time of bidding, a potential lender observes the active interest rate and

the interest rate of the losing bids (see section 2 for details) in addition to various characteristics

of the listing, such as the reserve rate.

When the lender determines whether to bid and what to bid, the lender must �rst form beliefs

over the return she will make if she funds part of the loan. Following the standard speci�cation

used in the asset pricing literature (see, e.g., Paravisini, Rappoport and Ravina, 2011), we assume

that the lender�s utility from owning an asset depends on the mean and variance of the return on
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the asset. Thus, we specify the utility of lender j who holds an asset with a random return Z, with

mean return E[Z] = �(Z) and variance V ar[Z2] = �2(Z), as follows:

ULj (Z) = �(Z)�Aj�2(Z),

where Aj is a lender speci�c random variable known only to lender j that determines her attitude

toward risk. Note that if the lender holds q units of asset Z, then E[qZ] = q�(Z) and V ar(qZ) =

q2�2(Z). Hence, lender j�s utility of having q units of asset Z can be expressed as follows,

ULj (qZ) = q�(Z)�Aj(q�(Z))2.

In our application, Z(r) denotes the (random) return from the loan when the contract interest

is equal to r. Thus the lender�s problem is to choose an amount qj 2 M and an interest rate rj

to maximize utility, ULj (qjZ(r))� c(qj), where c(qj) is the cost of committing qj dollars and M is

the feasible set of amount choices. In principle, the lender is free to bid any amount between $50

and the full amount requested by the borrower, but as we showed in section 2, the vast majority

of the bid amounts are either $50, $100, or $200. We therefore proceed with the assumption that

M � f$50, $100, $200g in what follows.

In order to understand the lender�s problem, it is useful to illustrate it graphically. Figure 4 is a

graphical representation of the lender�s problem in a simpli�ed setting without any amount choice

�we �rst discuss this simpli�ed version before turning to the full model with amount choice. In

the left panel of this �gure, the horizontal axis is �2 and the vertical axis is �. Note that for each

listing and each realization of the contract interest rate, r, we can assign a point on this � � �2

plane corresponding to the mean, �(Z(r)), and variance, �2(Z(r)), of the loan.

Now take some listing and consider mapping this listing to a point on the � � �2 plane for

di¤erent realizations of r. First, suppose that the listing is funded at a contract interest rate equal

to the reserve rate, so that r = s. At r = s, this listing has mean return �(Z(s)) and variance

�2(Z(s)), and the corresponding point (labeled r = s) is drawn accordingly in the �gure. Now

consider plotting (�(Z(r)), �2(Z(r))) for di¤erent values of r. In the �gure, the trajectory of

points, (�(Z(r)), �2(Z(r))), as r changes is shown as a movement along Curve C in the direction
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of the arrows. Note that as the contract rate is bid down from s, and as the corresponding point

on the �� �2 plane changes, so does the utility from funding the loan. This is shown in the right

panel of Figure 4, which shows how the utility of the lender changes as the contract interest rate

falls from s.

Note that we have also drawn a dashed line in the left panel of Figure 4. This is the lender�s

indi¤erence curve, f(�(Z(r)), �2(Z(r))) : ULj (Z(r)) � c(50) = "0jg, where c(50) is the cost of

committing $50, and "0j denotes the outside option/opportunity cost of the lender (we will discuss

more about the interpretation of "0j below). Note that this is the set of points (�; �2) that make

the lender just indi¤erent between lending and not lending. As the lender�s utility function is linear

with respect to � and �2, the indi¤erence curve is a straight line, i.e., � � Aj�2 � c(50) = "0j .

Any point above this line gives the lender a strictly higher utility than the outside option, and

vice versa. Now suppose that (�(Z(r0)), �2(Z(r0))) is the intersection of curve C and the lender�s

indi¤erence curve; that is, at contract interest r = r0, the utility from lending money to the listing

is exactly equal to "0j .37 Note that in the right panel of the �gure, this is re�ected in the fact that

U = ULj (Z(r))� c(50) crosses U = "0j at r0. We claim that under the assumption that the lender

behaves as if she is not pivotal, there is a (weakly) dominant strategy for the lender, which is to

bid r0.

In order to see that bidding rj = r0 is a dominant strategy, suppose that the lender bids an

interest rate, rj , that is higher than r0. If the �nal contract interest r turns out to be above rj ,

then the lender funds a loan at r regardless of whether she bid r0 or rj . If the contract interest r

turns out to be less than r0, then the lender does not get to fund the loan, regardless of whether

she bid r0 or rj . The only circumstance under which bidding rj or r0 makes a di¤erence is when

the �nal contract interest rate is between r0 and rj . In this case, the lender will be able to lend

at a rate equal to r if she bids r0, while she will not be able to lend if she bids rj . Since lending

at r 2 [r0; rj ] gives the lender higher utility than not funding the loan, setting the rate equal to r0

weakly dominates setting it to rj . Likewise, it is also easily shown that submitting a bid that is

lower than r0 is weakly dominated by bidding r0.

The reason why there exists a dominant strategy in this setting is that the auction used in

37Note that as drawn in the �gure, Curve C intersects with the lender�s indi¤erence curve only once. When it
intersects multiple times, the analysis is slightly more complicated (but not much more). Proposition 2 below is
general enough to cover the case where there are multiple intersections.
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Prosper has the �avor of the second price auction: As long as the lender�s bid is not �pivotal�(or

marginal) �a pivotal bid is a bid that brings the cumulative amount bid just over the requested

amount when we order the outstanding bids by their interest rate �at the end of the bidding period,

the contract interest rate is determined by the bid of someone else. Hence, under the assumption

that bidders behave as if they will not be pivotal, there is a dominant strategy for lenders.

The preceding argument hinges on the assumption that lenders behave as if they will never be

pivotal. We think that this is a reasonable approximation of the lenders�behavior even though

there is some probability that a given lender does end up being pivotal in practice.38 Given that

the average requested amount is $6; 603 for all listings ($5,821 for funded listings) and that the

vast majority of the lenders bid $50, a large number of bids are required to fund a single loan

(on average there are about 80 winning bids; see Table 2). Hence the probability of becoming the

pivotal bidder is quite low. Moreover, not only is the probability of being the pivotal bidder very

low, the possible gain from submitting a bid strategically is also small �the di¤erence between the

lowest interest rate among the losing bids and the interest rate of the marginal bid is typically very

small, about 0:12%. For these reasons, we assume in what follows that lenders behave as if they

will not be pivotal.

Thus far, our discussion has considered the case with no amount choice for the lenders. Now

consider the case with amount choice, where the borrower chooses q from the set M = f50, 100,

200g or chooses not to bid. When the lender faces an amount choice, she needs to keep track of

the utility associated with all possible actions. This is depicted in Figure 5. The three curves in

the �gure, Curve 50, Curve 100, and Curve 200, are de�ned as

WL
q (r)

DEF
= ULj (qZ(r))� c(q) = q�(Z(r))�Aj(q�(Z(r)))2 � c(q), for q 2 f50, 100, 200g (9)

where c(q) is the cost of committing q dollars as before. Just as before, there is a (weakly) dominant

strategy for the lender under the assumption that the bidder is not pivotal. For the case shown in

38The case in which the probability of being pivotal is literally zero is if bidders are restricted to bid $50 and the
requested amount is in multiples of $50. If the requested amount is 50�M , then M lowest bids win the auction. The
interest rate, on the other hand, is determined by the (M +1)-th lowest bid. Hence winning bids are never marginal.
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Figure 5, a (weakly) dominant strategy can be described by the following bid strategy:

bid amount $200 and interest r0 if active interest rate 2 [r0; s]

bid amount $100 and interest r00 if active interest rate 2 [r00; r0)

bid amount $50 and interest r
000
if active interest rate 2 [r000 ; r00)

do not bid if active interest rate 2 [0; r000),

where the active interest rate is understood to be equal to s if the listing has not attracted enough

bids to reach the requested amount. It is easy to check that this is a dominant strategy by following

the same logic we used to explain that bidding rj = r0 is the lender�s dominant strategy in Figure

4. We now state the previous analysis in the form of a proposition.

Proposition 2 De�ne a partition I0 = [0; r1], I1 = [r1; r2],� � � IM = [rM ; s], and a corresponding

quantity for each interval, q(0), q(1),� � � , q(M), where q(k) 2 f$0, $50, $100, $200g, so that

WL
q(k)(r) � W

L
q0 (r) for all q

0 and r 2 Ik. Under the assumption that the lender behaves as if she is

not pivotal, it is a dominant strategy to bid q(k) and interest rate rk when the active interest rate

is in Ik.

Before proceeding to the next section, we make a few remarks about the lenders�model. First,

note that the optimal strategy described above does require the lenders to submit new bids as the

active interest rate changes. In the case depicted in Figure 5, for example, the lender would submit

new bids as the active interest rate drops below r0, r00, and r000. This implicitly takes as given that

lenders have low cost of revising their bid.39

Our second remark concerns "0j , the (random) utility associated with not investing in Prosper.

Note that "0j is meant to capture the outside option of the lender: For example, "0j can be the

opportunity cost of taking money away from an existing asset in the portfolio and putting it in this

listing.40 If "0j is bigger than the maximum expected utility from submitting a bid on a listing, the

lender does not bid. To the extent that lenders must decide on which listings to bid from a large

39Some bidding strategies can be replicated with a one-time proxy bid. For example, one can submit four $50 bids,
two bids with interest rate r0, and two others with r0 and r00, respectively. This bidding strategy is equivalent to the
dominant strategy we described for Figure 5.
40 In our identi�cation and estimation, we assume that "0j is i.i.d. across j conditional on a set of time dummies,

i.e., we require independence of "0j , but only net of possible common macro shocks.
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pool of Prosper listings, "0j can also be interpreted as a reduced form way of capturing the value

of investing in other listings.41

Our third remark concerns how the model of the lenders ties together with our identi�cation

and estimation. The lenders in our model form beliefs over the distribution of the return on loans

when they make their bidding decision. We assume rational expectations with respect to these

beliefs,42 i.e., the lenders�beliefs coincide with the realized distribution of returns �which can be

backed out directly from the data. We will come back to this assumption in our estimation.

Our fourth remark also concerns the relationship between the model and identi�cation. Note

that we can identify the mean and variance of a return from funding a listing for each contract

interest rate directly from the ex-post borrower repayment data. In particular, we can identify the

mean and variance of a return from funding a listing at the reserve interest rate, i.e., we can identify

the �starting end point� of Curve C for any listing. This means that for each distribution of A

and N (the risk aversion parameter of the lender and the number of potential lenders) the lenders�

bidding strategy described above will induce a probability distribution over (i) whether a listing

is funded and (ii) the number of lenders who bid $0, $50, $100, and $200 for listings that are not

funded.43 In the next section, we show that this mapping from the primitives to the probability

distribution over (i) and (ii) is actually a one-to-one mapping. Correspondingly, our estimation is

based on matching the predicted distribution with the sample distribution.

Lastly, there are other bidding strategies that ensure the same payo¤s as the strategy described

in the proposition above. The strategy we described requires the least number of bid revisions

necessary, but it is only one of potentially many (weakly-) dominant strategies. As we explained

in the previous paragraph, our identi�cation and estimation relies on matching (i) and (ii). As will

become clearer in the next sections, other possible (weakly-) dominant strategies (beside the one

we described above) can also give rise to the same distribution over (i) and (ii). Given that we

41To the extent that f"0jg re�ects the attractiveness of other concurrent listings that are available on Prosper,
f"0jg may very well be endogenous. However, given that Prosper maintains a fairly large list of active listings at
any given point in time, we think that imposing independence of f"0jg across listings net of macro shocks is not
unreasonable. Also, the same lender typically submits multiple bids across listings, but the lenders in this market are
fairly small scale. For this reason, we think that correlation in f"0jg that comes from the lenders is fairly limited.
42More precisely, we assume rational expectations without common shocks.
43The distribution over the number of lenders who bid $0, $50, $100, and $200 for unfunded listings does not rely

on any assumptions regarding the timing at which potential lenders arrive. This depends only on the distribution
of N . On the other hand, the distribution over the number of lenders who bid $0, $50, $100, and $200 for funded
listings may depend on the timing. Because we do not make any assumptions regarding the timing at which potential
lenders arrive, we use the distribution for unfunded listings only for identi�cation and estimation.
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are using the implied distribution only over (i) and (ii) (rather than using the full implications of

the particular dominant strategy described above), our estimates are robust as long as lenders are

using a dominant strategy that induces the same distribution over (i) and (ii).

Equilibrium To close the model, we discuss a few issues related to equilibrium below. First,

the existence of a pooling equilibrium is generally guaranteed, while the existence of a separating

equilibrium is not. General su¢ cient conditions for the existence of a separating equilibrium are

provided in Mailath (1987). While it is relatively straightforward to check whether the model

satis�es the su¢ cient conditions in Mailath (1987) for a given parameter value, it is not easy to

analytically characterize the set of parameters that satisfy these conditions. In what follows, we

proceed by estimating the model assuming that the agents are playing a separating equilibrium.

Once we have estimated our parameters, we then check whether the su¢ cient conditions for sep-

aration are satis�ed at the estimated values.44 At the estimated parameter values, the conditions

seem to generally hold.

As for uniqueness of equilibrium, signaling models generally admit multiple equilibria because

there are always pooling equilibria in which no information is transmitted. What we require for our

identi�cation and estimation is that the agents play the same separating equilibrium conditional

on listing characteristics.45 This may be a strong assumption if there are many equilibria. It turns

out, however, that under a mild assumption on the beliefs over borrower types o¤ the equilibrium

path, there is a unique separating equilibrium (see Mailath, 1987). Given our regression results

from section 3, assuming that the agents are playing a separating equilibrium is not unreasonable.

44The conditions identi�ed in Mailath (1987) is a monotonicity requirement on the borrower�s utility function,

@

ds
V0(s; '; ~')

�
@

d~'
V0(s; '; ~') is increasing in ', 8';8X,

where V0(s; '; ~') is the borrower�s expected utility from posting a reserve interest rate s, when the borrower is
of type ', and the lenders perceive him to be of type ~'. The reason why we don�t include this condition in our
estimation routine is because we need to verify whether the monotonicity requirement is satis�ed for all X. It would
be computationally impossible to include this condition in the estimation routine.
45More precisely, we require that agents play the same equilibrium where borrowers separate below 36% and pooling

occurs only at 36%.
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5 Identi�cation

5.1 Identi�cation of the Borrower�s Primitives

The primitives of the borrower that we would like to identify are the period utility function, ut(�),

the distribution of borrower types, F'jX , the cost of default, D(�), the utility from the outside

option, �(�), and the distribution of "t, F"tjX . We specify ut to depend on the repayment amount

and a time trend as ut(r) = �(r � xamt) + dt, where dt is a period speci�c constant term.

We begin with a few remarks. First, note that we allow the distribution of ', F'jX , as well as the

distribution of "t, F"tjX , to depend on borrower characteristics, X. In particular, the distribution

of ' can depend on the amount requested. To the extent that there is some signaling value in the

requested amount, the conditional distribution of ' will depend on the amount requested. We are

allowing for this possibility. Second, note that we can normalize D(�) without loss of generality.46

Therefore, we normalize D(') = �'.47 It is also easy to see that we can normalize one of the

constants in ut without loss of generality: Hence we set dT = 0.48 Also, we can normalize the

location of F'jX at one point: Hence, we set F
�1
'jX�(�

�) = 0 for some �� 2 (0; 1) and X�.49

Our identi�cation result relies on the observation that there is a one-to-one (monotonic) mapping

of s to ' conditional on X (for the case of no pooling). This means that conditioning on a quantile

of s (given X) is equivalent to conditioning on a quantile of ' (given X). If we take observations

(loans) in which the reserve rate is equal to the � - quantile of s (= F�1sjX(�)) � note that it is

possible to do so because s is observable �the borrowers all have ' equal to F�1'jX(�). We use this

fact extensively. For expositional simplicity, we explain the identi�cation when the distribution of "

does not depend on X in the main text and discuss in the Appendix the case where the distribution

of " does depend on X. In the Appendix we also discuss the case when there is pooling at s = 36%.

46This is because a speci�cation with ~D(') = �', ~F'jX = F'jX�D�1, and ~� = ��D�1 is going to be observationally
equivalent to one with D, F'jX , and �. The important component of the model is the distribution of D('), rather
than the distribution of ' or the shape of D(�) per se.
47 In the model section, we noted that a model in which the cost of the outside option depends on another random

variable, as �('+�), is isomorphic to the baseline model in which the outside option is just �('). To see this, rede�ne
~' = '+ � , and ~"t = "t � �. This formulation would now induce correlation between f~"tg, but this is not a problem
as we discussed in a remark when we presenting the model of borrower repayment in section 4.1.
48 If we set ~dt = dt + � (8t) ~"t = "t � � (8t), it will be observationally equivalent to dt, F"jX .
49Given that D(') = �', if we set ~"t = "t + � (8t), ~F'jX(h) = F'jX(h + �), ~dT = dT , and ~dt = dt � ��

(t 2 f1; :::; T�1g) and ~�(') = �(')+��, it will be observationally equivalent to "t, dt, F'jX , and �. This normalization
is convenient for proving identi�cation, but we use an equivalent normalization (i.e., Med["tjX] = const:) for our
estimation.
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We start with our discussion of how to identify the primitives from the last period, t = T , and

work backwards. Consider the repayment decision of the borrower with '�� = F
�1
'jX�(�

�) at period

t = T . The borrower�s problem is as follows:

8><>: repay: if � (r � xamt) + "T � �F�1'jX�(�
�) = 0

default: otherwise,

where xamt is the loan size and we have replaced uT (r) with �(r � xamt), which is the repayment

amount of the borrower. This is simply a binary threshold-crossing model; hence using variation

in r, we can nonparametrically identify the distribution of "T , F"jX� = F". Once F" is identi�ed,

we can identify F�1'jX(�) for all � and X by conditioning the sample on the �-quantile of s given X

(i.e., samples with s = F�1sjX(�)).
50 This is because F�1'jX(�) is just a constant term in the binary

threshold-crossing model where the distribution of "T has already been identi�ed.

Now consider the t = T � 1 period problem:

8><>: repay: if � (r � xamt) + dT�1 + �VT (r; F�1'jX(�)) + "T�1 � �F
�1
'jX(�)

default: otherwise

Note that VT (r; F
�1
'jX(�)) is already identi�ed as well as the distribution of "T�1 (recall that "T�1

and "T have the same distribution by assumption).51 In fact, dT�1 and � are the only parameters

that are not identi�ed in the expression above. Hence identi�cation of dT�1 and � are immediate.

It should also be clear that fdtgt�T�2 can also be identi�ed by looking at the borrower�s period t

problem and the associated default probability.

Finally, we discuss how to identify �('). Recall the borrower�s FOC in equation (8):

@

@s
Pr(s)

�Z
V1(r; ')f(rjs)dr � �(')

�
+ Pr(s)

Z
V1(r; ')

@

@s
f(rjs)dr = 0:

Solving for �('), we obtain

�(') =

Z
V1(r; ')f(rjs)dr +

Pr(s)
@
@s Pr(s)

Z
V1(r; ')

@

@s
f(rjs)dr:

50Here, we are using the fact that ' ? ".
51The identical distribution of f"tg is not crucial. In fact, "t + dt is nonparametrically identi�ed for each t.
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Note that all the terms on the right hand side are identi�ed. First, V1 is identi�ed given that F",

F'jX , �, and fdtg have already been identi�ed. Also, we know that lenders of type ' submit a

reserve rate equal to s(') = F�1sjX(F'jX(')). Then evaluating Pr(s) and f(rjs) �which are both

directly observed in the data �at s('), we can identify the right-hand side of the equation. Hence

the previous equation identi�es �(').

5.2 Identi�cation of the Lender�s Primitives

The primitives of the model that we need to identify are the distribution of the coe¢ cient of risk,

FA, the distribution of the outside option, F"0 , the cost of lending, c(q), and the distribution of the

number of potential bidders, FN , which is assumed to have �nite support f1; ::; Ng. We �rst show

how to identify FA, F"0 , and c(q) under the assumption that Pq(�; �), which we will de�ne below,

is known for all values of (�; �) and q 2M [ f$0g � f$0, $50, $100, $200g. We will then show how

Pq(�; �) and FN are identi�ed. For all q 2M [ f$0g, de�ne Pq(�; �) as follows:

Pq(�; �) = Pr

�
q��A(q�)2 � c(q) � max

�
"0;max

q02M
fq0��A(q0�)2 � c(q0)g

��
for q 2M and

P0(�; �) = Pr("0 � max
q02M

fq0��A(q0�)2 � c(q0)g).

Pq(�; �) is just the probability that funding q dollars of a listing whose return is known to have

mean and variance equal to � and �2 gives higher utility than funding q0 (q0 6= q) dollars. Note

that Pq(�; �) simply corresponds to the probability that (A; "0) lie in the region de�ned by the

inequality inside the brackets on the right-hand side of the expression above. By varying � and �,

this region changes. Our proposition below claims that with enough variation in � and �, we can

recover the probability that (A; "0) is contained in an arbitrary set, i.e., identify FA and F"0 .
52

Proposition 3 There is a one-to-one mapping from (FA; F"0 ; c(�)) to (Pq(�; �); P0(�; �)).

Proof. See Appendix.

This proposition just claims that for (FA; F"0 ; c(�)) and (F 0A; F 0"0 ; c
0(�)) that are di¤erent, there

exists at least one (�; �) and q 2 M [ f$0g such that Pq(�; �) induced by (FA; F"0 ; c(�)) and
52Our identi�cation strategy is similar to the one taken in Cohen and Einav (2007).

35



(F 0A; F
0
"0 ; c

0(�)) are di¤erent. In other words, (FA; F"0 ; c(�)) is identi�ed if Pq(�; �) are identi�ed.

Proposition 4 Pq(�; �) is identi�ed for all q and (�; �) on the support of (�; �). FN is also

identi�ed.

Proof. See Appendix.

Here, we brie�y discuss the intuition for why FN and Pq(�; �) are identi�ed. We use the fact

that while the actual contract interest rate depends on the timing at which lenders arrive, the

funding probability itself is not a¤ected by the timing. Consider a listing Z with a requested loan

amount equal to �xamt, and whose mean return is �� and variance is ��2 if funded at the reserve

interest, s. Under the strategy described in section 4.2, a lender who is faced with a listing that

have yet to receive enough bids to cover the full requested amount, bids an amount equal to qj

if and only if lender j�s risk aversion parameter and the outside option, (Aj ,"0j), are such that

WL
qj (s) � maxfmaxq02M WL

q0 (s); "0jg, where we de�ned W in expression (9). Given that a listing

is funded if and only if there are su¢ cient number of potential bidders who are willing to fund the

listing when the return from the listing is evaluated at s, we can express the probability that a

listing is funded, as a function of FN , P50(��; ��), P100(��; ��), and P200(��; ��). Since the probability

that a listing is funded can be identi�ed for all xamt, �, and �2, if we assume that FN is invariant

to xamt and (�; �), su¢ cient variation in xamt and (�; �) identi�es both FN and Pq(�; �).53 The

proof is in the Appendix.

Note that for our identi�cation of the lenders�primitives, we rely on the fact that when a lender

with (Aj , "0j) visits a listing that is still not fully funded, the lender submits a bid with amount

q if and only if WL
qj (s) � maxfmaxq02M W

L
q0j
(s); "0jg, where WL

qj (�) is evaluated at the return from

funding the listing at the contract interest rate, s. Note that this strategy is consistent with the

dominant strategy we described in section 4.2, but it is can also consistent with other possible

dominant strategies.

53Assuming that there is rich variation in xamt is a bit problematic because the borrowers cannot request more
than $25; 000 i.e., xamt � 25000.
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6 Estimation

We estimate our model in three steps. First, we estimate the conditional distribution of the contract

interest rate given the reserve rate, f(rjs), and the funding probability, Pr(s). We estimate these

two functions nonparametrically: As f(rjs) and Pr(s) are both equilibrium objects we estimate

them without placing parametric assumptions. The second step involves estimating the primitives

of the model of the borrower, and in the last step, we estimate the model of the lender. While

our discussion of identi�cation in the previous section focused on nonparametric identi�cation, we

place parametric functional forms for some of the model primitives in our estimation, as we will

describe below.

6.1 Estimation of f(rjs) and Pr(s)

Our estimation proceeds �rst by estimating f(rjs; x) and Pr(s; x), where x is a vector of observable

listing characteristics such as the requested amount, debt-to-income ratio, and home ownership.

Since we observe the empirical distribution of r and the funding probability, we can nonparamet-

rically estimate these objects. Our estimation of f(rjs; x) is based on Gallant and Nychka (1987),

who propose a maximum likelihood estimation with Hermite series approximation.54 Our estima-

tion of Pr(s; x) is based on a Probit model with �exible functional forms. The details regarding

the estimation are contained in the Appendix.

6.2 Estimation of the Borrower Model

We parameterize the borrower�s period t utility function and outside option with parameters �B and

denote them by ut(r; xamt; �B) and �('; �B). The default cost D(') is normalized as D(') = �'

(see footnote 47).

In order to estimate �B, we maximize the likelihood with respect to the repayment behavior of

each borrower. Note that for each �B, our model of the borrower�s repayment behavior generates a

probability distribution over sequences of repayment and default decisions for each borrower type

'. Given that we do not observe ', we cannot use the probability distribution directly to form a

likelihood. Recall, however, that there is a monotone relationship between ' and s (conditional on

54We use a second-order Hermite series approximation.

37



x), where this relationship is implicitly de�ned by the borrower�s �rst-order condition (equation

(8)). This means that we can back out the type of the borrower from his choice of s by using

the �rst order condition. Once we can assign a ' for each borrower, we can then compute the

likelihood.

The actual computation of the likelihood proceeds as follows: First, note that we can compute

V1(r; '; x; �B) given �B. That is, for any value of fr; '; xg, we can recursively solve the borrower�s

dynamic problem, and compute the value function, V1(r; '; x; �B), given �B. Second, we can assign

a ' for each borrower from the observed reserve rate choice. Recall that the borrower�s choice of

the reserve rate satis�es the �rst-order condition;

@

@s
Pr(s; x)

�Z
V1(r; '; x; �B)f(rjs; x)dr � �('; �B)

�
+ Pr(s; x)

Z
V1(r; '; x; �B)

@

@s
f(rjs; x)dr = 0.

(10)

Given that we observe the reserve rate chosen by each borrower, this equation can be seen as an

equation in '. In other words, the �rst-order condition reveals, for each choice of s, the type of

borrower ' who found it optimal to choose s. Since we have estimated Pr(s; x) and f(rjs; x) in

the �rst step, we can replace these objects with our nonparametric estimates cPr(s; x) and bf(rjs; x).
This allows us to back out the borrower�s type, b' � b'(s; x; �B), for each borrower.55 Note that

Proposition 1 shows that the right-hand side of equation (10) is monotonic in ', guaranteeing that

a unique solution exists given s and x (for unpooled types).56

The third step of our procedure is to compute the likelihood for a given sequence of repayment

decisions for each borrower i, using b'i = b'(si; xi; �B), which we obtained from the �rst-order

55We solve for b' by the bisection method. More precisely, we evaluate the left hand side of expression (10) at some
value of ', ' = '0. Denote this value as L('0). If L('0) is positive, we take a larger value of ', '1 (> '0). If L('0)
is negative, we take a smaller value of ', '1 (< '0). We continue taking larger values of ' as long as L(') is positive,
and similarly, we continute taking smaler values as long as L(') is negative. If, at some n 2 N, the left hand side is
positive at 'n and negative at 'n+1 ('n < 'n+1), we take 'n+2 to be the midpoint of 'n and 'n+1. Similarly, if the
left hand side is negative at 'n and positive at 'n+1 ('n > 'n+1), we take 'n+2 to be the midpoint of 'n and 'n+1.
We continue until j'n � 'n�1j is less than 10�5 in absolute value.
56 In practice, there are a few borrowers (less than 10% of the sample) for whom we could not solve for b'(s; x; �B)

even when s < 36%. This would happen if the single-crossing condition is not satis�ed for a given (s,x), i.e., f(rjx; s)
does not satisfy FOSD or Pr(s; x) is not increasing at (s,x).
In principle, Mailath (1987) gives conditions under which a separating equilibrium exists (in particular, these

conditions imply that the single crossing property for the borrowers is satis�ed for equation (10)). We checked
whether the conditions in Mailath (1987) are satis�ed at the estimated parameters: By-and-large, they seem to be.
But for some values of x, the condition fails, and as a result, we cannot solve for b'(s; x; �B) for some borrowers (i.e.,
L(') �de�ned in the previous footnote �is positive or negative for all values of '). When we fail to solve for b', we
replace b' with a large positive number 'U or a large negative number 'L. We tried two di¤erent values for ('U ; 'L)
and the results seem to be pretty stable. The results from the di¤erent speci�cations are available on request.
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condition. The borrower i�s default probability at period t is

Pr(default at t; �B) =
Z
1 f�b'i � ut(ri; xi;amt; �B) + dt + "it + �Vt+1(ri; b'i)g dF"jx: (11)

Similarly, the probability of paying back at period t is

Pr(repay at t; �B) =
Z
1 f�b'i � ut(ri; xi;amt; �B) + dt + "it + �Vt+1(ri; b'i)g dF"jx:

Let �it be an indicator variable that is equal to 1 if borrower i defaults at period t, and 0 otherwise.

Then, the likelihood of a sequence of repayment decisions, f�itg, is

li(�B; b'i) = TiY
t=1

Pr(default at t)�it � Pr(repay at t)(1��it); (12)

where Ti � maxf1+
PT
�=1 �i� ; 36g, i.e., the number of periods until default or 36 periods, whichever

is smaller.

Finally, the likelihood is written as

L(�B) =

NLY
i=1

"
TiY
t=1

Pr(default at t)�it � Pr(repay at t)(1��it)
#
; (13)

where NL is the number of loans. We obtain our parameter estimates by maximizing the likelihood

function.57

6.3 Estimation of Lender Side

The last part of the estimation considers the model of the lender�s bidding behavior. In particular,

we discuss how to estimate the distribution of the number of potential bidders, FN , the distribution

of the lender�s risk attitude, FA, and the lender�s cost of bidding, c(q). We parameterize FN , FA,

F"0 and c(q) by �L, as FN (�; �L), FA(�; �L), F"0(�; �L) and c(q; �L).
57Up to now, our discussion focused on the case when there is no pooling among the borrowers. Note that even

when there is (partial) pooling, we can obtain the same likelihood (expression (12)) for the types that are not being
pooled, i.e., borrowers who submit a reserve rate below 36%. For estimating the parameters of the borrowers when
there is pooling, we proceed by using just the subsample of borrowers who are not pooled. While this may not be the
most e¢ cient way of estimation, our estimates of the parameters are still consistent for all of the borrower primitives
except for F'jX , for which we will not have a point estimate.
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We use a (simulated) method of moments by matching the conditional funding probability and

the number of bids in order to estimate �L. First, let fdi be a dummy variable which equals 1 if

listing i is funded, and 0 otherwise. Then 1
I

PI
i=1 fdi gives the (empirical) probability that a listing

is funded, where I is the number of observations. Likewise, let fdi(�L) (� fd(xi; si; �L)) denote a

random dummy variable which equals 1 if listing i is funded and 0 otherwise, given parameter �L.

As we will explain below, fd(xi; si; �L) can be expressed as

fd(xi; si; �L) = 1

8<:
NX
j=1

q�j � xi;amt

9=; and (14)

q�j = arg max
qj2M[f0g

1fqj 6= 0gWL
qj (s) + 1fqj = 0g"0j ,

where N is the (random) number of potential lenders, WL
qj (s) is the utility of lending qj dollars

at interest rate s (de�ned in expression (9)), and 1fqj = 0g (1fqj 6= 0g) is an indicator function

that equals one if qj = 0 (qj 6= 0). Taking this expression as given for now, our objective function

minimizes the di¤erence between the sample moments and the model expectation:

1

I

IX
i=1

fdi � E[fdi(�L)].

We now explain why fdi(�L) can be expressed as (14). Suppose that there are N = ~N potential

lenders and their risk attitude and outside option are (Aj)
~N
j=1 and ("0j)

~N
j=1. Now, consider what the

optimal amount choice for each lender would be if the return from funding the listing were evaluated

at the reserve interest rate. The optimal choice is given by the second equation in expression (14):

q�j = arg max
qj2M[f0g

1fqj 6= 0gWL
qj (s) + 1fqj = 0g"0j ,

where WL
qj (s) is computed by imposing rational expectations as we explained at the end of Section

5.2.58 Now consider the right hand side of the �rst equation of (14). xi;amt is the loan amount

requested by borrower j, and
PN
j=1 q

�
j is just the sum of the lenders�bid amount. Assuming that

the lenders play the strategy we described in section 4.2, a loan is funded if and only if
PN
j=1 q

�
j is

bigger than the requested loan amount.

58We use the relized distribution of Z(r) to evaluate WL
qj (s).
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In addition to the funding probability, we also use another set of moments to estimate the

parameters of the lender�s model. For each listing i, let Ni;q denote the number of lenders who

bid an amount equal to q. Then,
hPI

i=1 1ffdi = 0g
i�1

�
PI
i=1 1ffdi = 0gNi;q gives the expected

number of lenders who bid an amount equal to q conditional on a listing being unfunded. Now

consider the model counterpart, ffdi(�L) = 0gNi;q(�L), where Ni;q(�L) is de�ned as

Ni;q(�L) =

24 NX
j=1

1
�
q�j = q

	35 (for q 2 f50; 100; 200g) and

q�j = arg max
qj2M[f0g

1fqj 6= 0gWL
qj (s) + 1fqj = 0g"0j ,

where WL
qj is evaluated at r = s as before. This expression corresponds to the number of lenders

who bid an amount equal to q for unfunded listings if the lenders play the strategy we described

in Proposition 2. Note that this object does not depend on the timing at which the lenders arrive.

Conditional on the loan being unfunded, the number of lenders who bid an amount equal to q

is invariant to the timing at which the lenders visit the listing. This is in contrast to the actual

contract interest rate or the number of lenders who bid an amount equal to q conditional on the

listing being funded. Since we do not place any restrictions on the timing, we use the number of

lenders who bid amount q only for unfunded listings.59

The last set of moments that we use is the fraction of listings that receive no bids. For each

listing i, let nbi denote a dummy variable that equals 1 if listing i receives no bids at all, and 0

otherwise. Let nbi(�L) denote its model counterpart. Our objective function for estimating the

lender�s model is thus

QI(�L) = w1;I

 
1

I

IX
i=1

fdi � E[fdi(�L)]
!2

+wI;2

 
1PI

i 1ffdi = 0g

IX
i=1

1ffdi = 0gNi;q � E[1ffdi = 0gNi;q(�L)]
!2

+wI;3

 
1

I

IX
i=1

nbi � E[nbi(�L)]
!2
,

where w1;I , wI;2, wI;3 are weights given by the inverse of the variance of the sample moments.

59We need additional assumptions on the timing of lender arrival in order to obtain a distribution over the contract
interest rate or the distribution over the number of lenders who bid di¤erent amounts.
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Because the model expectations in the objective function are di¢ cult to analytically compute, we

use simulation in practice. We also note that while we have suppressed the conditioning variables

in our exposition, we have a set of moment conditions for each conditioning variable.60

7 Results

The exact speci�cation we use to estimate the model of the borrower is as follows:

ut(rj ; �B) = �r � xamt + �t � 1fdt = 1g;

D(') = �';

F"jX(") = F"(
"

�"
);

�('; x; �B) = �xgr';

F'jX(')

where �xgr is a grade-speci�c constant and f�tg (t 2 f1; 2; :::; 35g) are time dummies.61 We assume

that F" corresponds to the CDF of a Type I extremum value distribution and �" is the standard

error of ". We nonparametrically estimate the distribution of ' for each credit grade. The outside

option �(') is speci�ed as a linear function with a credit grade speci�c slope. The discount factor,

�, is set at 0:951=12.

As for the lenders�side, we estimated the lender�s utility function, the distribution of potential

lenders, FN , the distribution of "0j , and the costs of bidding for each amount choice, fc100; c200g

assuming rational expectations.62 In our estimation, we speci�ed FN to follow a log normal distri-

bution with parameters �N and �2N . Moreover, we speci�ed the distribution of both risk attitude
60For our �rst two moments (fdi and 1ffdi = 0gNi;q), we compute the moments for each credit grade, each quantile

of the debt-to-income ratio and each quantile of the amount requested. For our last moment (nbi), we just compute
one moment for each credit grade. We then sum the moment conditions for each credit grade.
61 In practice, we impose �t = �t+1 = �t+2 for t = 3N + 1 (N 2 f0; :::; 11g) and normalize one of them, estimating

11 time dummies for each credit grade.
62 In particular, rational expectations without a common shock. Given that the mean return from investing in

Prosper was very low during the time period we study, imposing rational expectations without a common shock
may not be attractive. We re-estimated the model by perturbing the beliefs of the lenders. In particular, we re-
estimated the model using distributions with a 1% higher expected return and a 2% higher expected return, as well
as distributions with a 5% increase in the variance and a 5% decrease in the variance. The credit supply curves we
obtain by simulating the equilibrium outcome under the estimated parameters were all qualitatively similar. The
estimation results are available upon request.
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FAj and the distribution of "0j , F"0 , to be Normally distributed with N(�A; �
2
A) and N(�"0 ; �

2
"0).

We report the estimation results in Table 7 and Table 8 (except for the time dummies f�tg,

which we suppress). In the �rst two columns of Table 7, we report the parameter estimates of

the borrowers�model and in the rest of the table, we present the estimation results of the lenders�

model. In Table 8, we report the distribution of the default cost of the borrower, '.

Recall that � is a parameter that measures the relationship between the default cost of the

borrower (') and the cost of borrowing from outside sources (�'). Our estimates for �, reported

in Table 7, indicate that � is smaller for high credit grades (�AA = 3:1 and �A = 4:3) and becomes

larger for low credit grades (�B = 9:5 and �C = 8:8). Given that the interquartile range of

the distribution of ' are 3:0 for credit grade AA and 1:8 for credit grade A, the interquartile

range of the outside option are about $9; 300 for credit grade AA and $7; 900 for credit grade A.

The interquartile range of the outside option are $10; 100 and $8; 600 for credit grade B and C,

respectively. In Table 8, we report the quantile of the default cost (') for each credit grade. The

median default costs are estimated to be around $9; 400 for credit grade AA, $6; 800 for credit grade

A, $2; 800 for credit grade B and $3; 000 for credit grade C.63

Columns 3 through 7 of Table 7 report parameter estimates for the lenders. We estimated a

log Normal distribution for the number of potential bidders. The parameter estimates reported in

the table translate to a mean number of potential lenders of about 127:1, 92:1, 142:3, and 55:8 for

each of the four credit grades. Our estimates of the lenders�risk aversion parameter range from

1:91� 10�2 to 3:67� 10�2. One way to interpret these numbers is to consider a lottery that yields

$10 with probability 0:5 and yields �$x with probability 0:5 and ask, �At what amount is the

lender indi¤erent between participating in the lottery and not participating?�It turns out that x

equals $9:63, $9:57, $9:32, $9:35 for each of the credit grades.

Finally, in order to understand how the type of the borrower is correlated with observable

characteristics, we regressed the estimated ' on observable characteristics using a Tobit.64 The

results are reported in Table 9. We �nd that the coe¢ cient on log requested amount is negative,

which means that a borrower who requests a larger loan amount tends to be of a worse type. This

is consistent with evidence found in Adams, Einav, and Levin (2009), in which the authors �nd

63For borrowers who posted a reserve rate equal to 36%, we do not have a point estimate of their types. The
quantiles are not a¤ected by this however.
64We use a Tobit because we do not have point estimates for borrowers who submitted a reserve rate equal to 36%.
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evidence of bad types selecting into larger loans. Our estimated coe¢ cients show that the debt-to-

income ratio is negatively correlated with ' and that the home ownership is positively correlated

with '.

8 Counterfactual Experiment

In our counterfactual experiment, we compare the equilibrium market outcome and welfare under

three alternative market designs �a market with signaling, a market without signaling (i.e., pooling)

and a market with no information asymmetry between borrowers and lenders. This counterfactual is

interesting because it allows us to empirically quantify the extent to which credit markets su¤er from

adverse selection and the extent to which signaling can improve market conditions. In particular,

the question of how adverse selection a¤ects credit supply goes back to Stiglitz and Weiss (1981)

but few empirical attempts that study the e¤ect have been made.65

In Figure 6, we present the credit supply curve we estimated for each of the four credit grades.

The horizontal axis in the Figure corresponds to the average supply of credit and the vertical

axis corresponds to the interest rate. The scale of the horizontal axis is di¤erent for each of the

four panels re�ecting the fact that the amount of credit supplied varies considerably from credit

grade to credit grade. The thick dotted curve in each of the panels represents the credit supply

curve under no signaling (i.e., pooling). The credit supply curve under pooling is computed for the

counterfactual scenario in which borrowers submit a secret reserve rate. Under this counterfactual

scenario, each borrower posts a secret reserve rate, and if the contract interest at the end of the bid

closing period is less than the secret reserve rate, the borrower takes out a loan. This market design

would induce pooling of types, i.e., at a given interest rate, r, there would be a mix of di¤erent

borrowers who take out the loan, and the lenders have no way of di¤erentiating among them. More

precisely, the mix of borrowers who take out the loan at r are borrowers whose outside options are

below a certain threshold, i.e., borrowers whose type is low enough that he would rather borrow

at r than not borrow at all. Note that under this market design, it is a dominant strategy for

each borrower to submit a (secret) reserve rate equal to the interest rate at which the borrower is

65We treat FN , the distribution of the number of lenders as exogenous in simulating our counterfactual. We also
take F', the borrower�s type distribution, as exogenous. We acknowledge that these are potential limitations of our
counterfactual experiment.
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indi¤erent between borrowing and not borrowing. (For a more detailed computational procedure

for obtaining the credit supply curve under pooling as well as the supply curve under signaling and

under no asymmetric information, see Appendix 10.4)

In Figure 6, the solid curve corresponds to the credit supply curve under signaling and the

dotted line that lies on top of it corresponds to the supply curve under no asymmetric information.

Note that these two supply curves correspond to the supply for a �xed ': In the Figure, the type

is set to the type of the median borrower.66 The credit supply curve under signaling corresponds

to the average amount of credit that potential lenders are willing to supply under the mechanism

used by Prosper, because we assume that the data is generated from a signaling equilibrium. Note

also that the supply curve for signaling is truncated above �at the reserve interest rate. Under the

signaling equilibrium, the borrower does not have access to credit above the reserve rate.

The credit supply under no asymmetric information is computed under the counterfactual sce-

nario in which the lenders have perfect knowledge of '. The dotted line on top of the solid curve

is the credit supply curve of the median borrower under no asymmetric information. This credit

supply curve extends beyond the reserve rate, but it is otherwise the same as the one for signaling.

This is because under both the signaling equilibrium and no asymmetric information, the lenders

have perfect knowledge of borrower type in equilibrium: The lenders know that they are lending to

the borrower with a particular type. Hence, the two credit supply curves partly coincide. The only

di¤erence between the two is that under no asymmetric information, the borrowers can borrow at

rates that are higher than the reserve rate that they would post under the signaling equilibrium.

This means that the credit supply curve for no asymmetric information extends beyond the reserve

rate all the way until the point at which the borrower is indi¤erent between borrowing and not

borrowing. The truncated supply curve under the signaling equilibrium can be viewed as capturing

the cost that borrowers must pay (or the surplus that has to be burned) in order to di¤erentiate

himself from lower types.

The Figure makes clear the role of adverse selection and moral hazard in credit markets. First,

note that the credit supply curve under signaling and under no asymmetric information for grades

B and C are backward bending. This is a result of moral hazard. As borrowers are charged a

66The two credit supply curves reported in the Figure (Supply curve for signaling and no asymmetric information)
correspond to the supply for a �xed listing characteristic, xamt = 10; 000, xdti = 0:2, xho = 1. The type of the
borrower corresponds to the type of the borrower who posts a median reserve interest rate.
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higher interest, it increases the likelihood that they will default. Above a certain interest rate, the

marginal increase in revenue from a higher interest rate is overwhelmed by the loss from increased

incidence of default. As a result, the supply of credit starts to decrease at a certain point.

On the other hand, the shape of the supply curves under pooling re�ects both moral hazard

and adverse selection. Both adverse selection and moral hazard combine to suppress the supply of

credit at higher interest rates. The borrowers who are willing to take out a loan at high interest

rates tend to be of low types who are likely to default to begin with. Moreover, the borrowers

that take out the loan are likely to default because of high interest. This is the reason why the

supply curves for pooling start to bend backwards sooner (i.e., at lower interest rates) than the

supply curves under signaling and under no asymmetric information. While we have abstracted

from the demand of credit, if the demand for credit is large enough, there could be credit rationing,

as demonstrated by Stiglitz and Weiss (1981).

The Figure is also informative about the severity of adverse selection for di¤erent credit grades.

There are substantial di¤erences between the credit supply under pooling and the supply curve

under no asymmetric information for credit grades B and C. This is indicative that adverse selection

in these credit categories is relatively more severe. This is broadly consistent with the �ndings in

Iyer et al. (2010) where they �nd that conditional on the credit grade, the borrowers�credit score

had a statistically signi�cant e¤ect on the default rate in grade C, but not in higher credit grades.67

Finally, we examine the welfare implications of signaling and information asymmetry. In Table

10, we report the expected surplus of the lenders and the borrowers per listing for each of the

three di¤erent market designs we consider. We compute the expected and the median surplus

by simulating the model using the estimates we obtained from our structural model. Details are

discussed in the supplementary material. Listing characteristics such as the amount, debt-to-income

ratio, and home ownership are set to their median values, as before. In the �rst three columns,

we report the expected surplus averaged over the borrower�s type distribution. In the last three

columns, we report the expected surplus that corresponds to a listing with a median borrower type.

First, consider the welfare of the borrowers reported in the �rst column. Comparing the borrower

welfare under pooling and under no asymmetric information, we �nd that the welfare loss from

information asymmetry is relatively modest in credit grade A ($142:7 under pooling and $143:3

67See Table 2, (p.34) of Iyer et al. (2010).
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under no asymmetric information) while the welfare loss is relatively more severe in credit grades

B and C ($343:1 under pooling $398:4 under no asymmetric information for credit grade B, and

$374:7 under pooling and $425:5 under no asymmetric information for credit grade C), con�rming

our earlier remark that adverse selection is more serious in credit grades B and C. Comparing these

numbers to the welfare results under signaling, we �nd that welfare improves relative to pooling

in all credit grades except for credit grade AA. In particular, for credit grades B and C, signaling

restores most of the welfare loss caused by adverse selection. For credit grade AA, the borrower

welfare under pooling is higher than the borrower welfare under signaling. This happens because

the surplus that must be burned (i.e., the transactions that must be foregone by submitting a lower

reserve interest rate under signaling) in order to maintain a separating equilibrium is su¢ ciently

costly. This o¤-sets any bene�ts gained by reducing information asymmetry between the lenders

and the borrowers. Note that in general, it is not possible to Pareto-rank equilibrium under pooling

and signaling.

Second, consider the welfare of the lenders reported in the second column. Comparing the

welfare of the lenders under pooling and under no asymmetric information, we �nd that welfare

decreases considerably under pooling in all credit grades except for credit grade A, where welfare

of the lenders is slightly higher under pooling. Similar to what we found for the case of borrowers,

we �nd that signaling improves welfare in credit grades B and C, but not in credit grade AA (and

A). Again, the reason for this is that for credit grade AA, there is a net decrease in the listings

that are funded as a result of low reserve rates. This is in contrast to credit grades B and C

where the increased credit supply from reducing information asymmetry outweighs the reduction

in transactions that result from lower reserve interest rates.

Finally, the third column of Table 10 is informative about the cost of adverse selection, as well

as the extent to which welfare can be restored through signaling. Comparing the total surplus

under pooling and no asymmetric information, we �nd that the cost of adverse selection can be

quite large, with a 16% ($157:5) decrease in total surplus for credit grade B and a 13% ($124:2)

decrease in total surplus for credit grade C. We also �nd that in some instances, signaling can

restore a large fraction of the potential welfare loss from adverse selection, with 95% and 87% of

the welfare loss avoided through signaling in credit grades B and C.
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9 Conclusion

In this paper, we study how signaling can restore some of the ine¢ ciencies arising from adverse

selection using the data from an online peer-to-peer lending market, Prosper.com. We �rst provide

some evidence showing that the reserve interest rate posted by potential borrowers work as a

signaling device. Based on this evidence, we then develop and estimate a structural model of

borrowers and lenders, where low reserve interest rate can credibly signal low default risk. In

our counterfactual, we compare the credit supply curve and welfare under three di¤erent market

designs: a market with signaling, a market without signaling, and a market with no asymmetric

information. We �nd that in one of the credit grades, signaling exacerbates the welfare cost of

adverse selection, but we also �nd that signaling can restore much of the welfare losses that result

from adverse selection in other credit grades.

Our paper is the �rst structural analysis of signaling in industrial organization to the best of

our knowledge, and it is also the �rst attempt at estimating the credit supply curve, as far as

we are aware. We also believe that the methods developed in the paper can be applied to other

settings in which signaling is important (e.g., auctions and reservation price). For future research,

we think that it is important to study other types of credit markets in order to understand more

fully the costs of adverse selection and the bene�ts of signaling. Given that our analysis in this

paper is limited to a particular P2P lending platform, we think that studying other credit markets

is important for a general understanding of credit supply and the role of signaling.

Stern School of Business, New York University
Northwestern University
Northwestern University

A Appendix

A.1 Proof of Proposition 1

We provide a proof of Proposition 1. We do so by �rst proving the following lemma.

Lemma 1 @
@'V1(r; ') is non-increasing in r.
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Proof. The proof is by induction. We �rst show that @
@r@'VT (r; ') � 0,

@
@rVT (r; ') � 0, and

D0(') � � @
@'VT (r; ') < 0. We then show that if

@
@r@'V� (r; ') � 0 and D

0(') � @
@'V� (r; ') < 0 hold

for some � � T , then the same conditions hold for � � 1. First, for t = T ,

@

@'
VT (r; ') =

@

@'

Z
maxfuT (r) + "T ; D(')gdF"T ("T )

=

Z �
0� 1fuT (r) + "T � D(')g+D0(')1fuT (r) + "T < D(')g

�
dF"T ("T )

= D0(') PrT (r; ') ,

where 1f�g is an indicator function and PrT (r; ') = Pr(uT (r) + "T < D(')). It is easy to see that

D0(') � @
@'VT (r; ') < �

@
@'VT (r; ') < 0 becauseD

0(') < 0, by assumption and Pr (uT (r) + "T < D(')) 2

(0; 1). Also, note that @
@ruT (r) < 0 implies @

@r Pr (uT (r) + "T < D(')) > 0, which means that

@
@r@'VT (r; ') � 0. It is also easy to see that

@
@rVT (r; ') < 0.

Now, assume @
@r@'Vt+1(r; ') � 0,

@
@rVt+1(r; ') � 0, and D

0(') � � @
@'Vt+1(r; ') < 0 for some t.

Then,

@

@'
Vt(r; ') =

@

@'

Z
maxfut(r) + "t + �Vt+1(r; '); D(')gdF"t("t)

=

Z 0B@ @
@'�Vt+1(r; ')1fut(r) + "t + �Vt+1(r; ') � D(')g+

D0(')1fut(r) + "t + �Vt+1(r; ') < D(')g

1CA dF"t("t)
=

@
@'�Vt+1(r; ')(1� Prt (r; '))+

D0(') Prt (r; ')

� D0('),

where Prt (r; ') = Pr(ut(r)+"t+�Vt+1(r; ') < D(')). The last inequality holds since @
@'Vt+1(r; ') �

D0('). Again, it is easy to see @
@'Vt(r; ') < 0, and @@rVt(r; ') � 0. To see that @

@r@'Vt(r; ') � 0,
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note that

@

@r@'
Vt(r; ')

=
@

@r

264 @
@'�Vt+1(r; ')(1� Prt (r; '))+

D0(') Prt (r; ')

375
=

264 @2

@r@'�Vt+1(r; ')(1� Prt (r; '))+
@
@r Prt (r; ')� (D

0(')� @
@'�Vt+1(r; '))

375 � 0.
By induction we conclude that @

@r@'V1(r; ') � 0.

Proposition 1 If @
@s Pr(s) > 0 and F (rjs) FOSD F (rjs

0) for s0 > s, then we have SCP, i.e.,

@2

@s@'
V0(s; ') =

@2

@s@'

�
Pr(s)

Z
V1(r; ')f(rjs)dr + (1� Pr(s))�(')

�
< 0.

Proof. First, let us consider the second term. Note that @2

@s@'(1�Pr(s))�(') = �Pr
0(s)�0(') <

0. This is because Pr0(s) > 0 and �0(') > 0 by assumption. Second, we consider the �rst term.

Note that for s0 < s1, F (rjs1) �rst-order stochastically dominates F (rjs0). Hence if @
@'V1(r; ')

is non-increasing in r, then
R

@
@'V1(r; ')dF (rjs0) �

R
@
@'V1(r; ')dF (rjs1) for any s0 and s1 s.t.

s0 < s1. This implies that @
@s@' Pr(s)

R
V1(r; ')dF (rjs) � 0. Thus, we complete the proof.

A.2 Identi�cation of the Model of the Borrowers When F" depends on X

We discuss the identi�cation of the borrower�s model when F" depends on X. The only di¤erence

between the case in which F" depends on X and the case described in the main text is that

F"jX� 6= F"jX in the former. Hence even when F" depends on X, it is easy to see that F'jX� and

F"jX� are both identi�ed, following the same argument as the proof in Section 4.1. Also, �, dt and

�(') can also be identi�ed just from the observations with X = X�. To see that F'jX and F"jX

are identi�ed for any X, note that it is enough to identify F'jX(0) �if F'jX(0) is identi�ed, we can

follow the proof in Section 4.1 to identify F'jX and F"jX . Note that if we set ~F"jX(h) = F"jX(h��),
~F'jX(h) = F'jX(h + �), ~dT = dT , ~dt = dt � �� (t < T ), and ~�(') = �(') + ��, ( ~F"jX ; ~F'jX ; ~�; ~dt)

will be observationally equivalent to (F"jX ; F'jX ; �; dt). Moreover, it should be easy to see that

for each given pro�le, (F �"jX ; F
�
'jX ; �

�; d�t ), the set of pro�les that are observationally equivalent to
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(F �"jX ; F
�
'jX ; �

�; d�t ) are given by f(F"jX ; F'jX ; �; dt) : F"jX(h) = F �"jX(h��), F'jX(h) = F
�
'jX(h+�),

dT = d
�
T , dt = d

�
t � �� (t < T ), �(') = ��(') + ��g. Given that we have already identi�ed �('),

we can identify F'jX(0).

A.3 Identi�cation of the Model of Lenders

In this section, we prove identi�cation of the primitives of the model of the lenders. First we provide

a proof of Proposition 3.

Identi�cation of c(�) Recall from section 5.2 that Pq(�; �) corresponds to the probability

that (A; "0) falls into a region de�ned by inequalities. Fix a particular value of "0, and Pq(�; �) can

be considered as de�ning a region for A. The region of A that corresponds to Pq(�; �) is de�ned

by the intersection of straight lines Uq = Uq(A) � q� � A(q�)2 � c(q) for q = $50, $100, and

$200 (U50, U100, U200). Figure 1 illustrates this for the case of
100��c(200)+c(100)

30000�2
< c(50)�c(100)+50�

7500�2

(, � > �c(200)+5c(100)�4c(50)
100 ) (which ensures that the intersection between U200 and U100 is to the

left of the intersection between U100 and U50).

Note �rst that it is possible to assume c(50) = 0 without loss of generality.68 We also assume

that c(200) > 3c(100) for our proof below. This restriction is just for exposition: Identi�cation for

c(200) < 3c(100) can be shown analogously. Now, consider P200(�; �). Given � and �, bidding $200

is optimal if the risk parameter Aj is su¢ ciently small and the outside option "0 is also su¢ ciently

small. Hence, P200(�; �) can be expressed as follows,

P200(�; �) = Pr(fU200(�; �) > maxfU50(�; �), U100(�; �)gg \ f"0 < U200(�; �)g)

= Pr(Aj < A(�; �) ^ "0 < 200��Aj(200�)2 � c(200)),

where A(�; �) = c(100)�c(200)+100�
30000�2

.69

Observe that if A(�; �) < 0, then as we let � ! 0 (while keeping � �xed), P200(�; �) would tend

to 0.70 However, if A(�; �) = 0, then as � ! 0, P200(�; �) would converge to a positive number,

68We can add a constant to c(50), c(100), c(200) and shift the distribution of " to the right without changing the
distribution of outcomes.
69This is true as long as � is �big�enough, i.e., �c(100)+50�

7500�2
> 100��c(200)+c(100)

30000�2
(, � > �c(200)+5c(100)

100
).

70This is because A(�; �)
�
= c(100)�c(200)+100�

30000�2

�
tends to �1 as � ! 0 (while keeping � �xed).
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i.e.,

lim
�!0

P200(�; �) = Pr(Aj < 0 ^ "0 < c(200)� 2c(200));

where we have used the fact A(�; �) = 0 () c(100) � c(200) + 100� = 0 and Aj(200�)2 ! 0.71

Let us de�ne �� as

�� = sup
�
f lim
�!0

P200(�; �) = 0g.

Then, �� is identi�ed because everything in the right hand side of this expression is identi�ed.

Since �� solves c(100) � c(200) + 100�� = 0, we can identify c(100) � c(200). Similarly, working

with the intersection between U50 and U100, we can identify c(100).

Identi�cation of FA Now we consider identi�cation of FA, given that c(�) has already been

identi�ed. Again note that

P200(�; �) = Pr(Aj < A(�; �) ^ "0 < 200��Aj(200�)2 � c(200)).

Now take � and � so that A(�; �) = �+, or equivalently, � = c(200)�c(100)+30000�2�+
100 , where �+ is some

positive number.72 Then consider keeping A(�; �) �xed at �+, but moving 200��Aj(200�)2�c(200)

by changing both � and �. In particular, as � ! 0, we have

� ! c(200)� c(100)
100

and

P200(�; �) ! Pr(Aj < �
+ ^ "0 < c(200)� 2c(100))

= Pr(Aj < �
+) Pr("0 < c(200)� 2c(100)),

where we have used the independence assumption between Aj and "0 for going from the second

line to the third line. By varying �+ (> 0), we can identify Pr(Aj < t) Pr("0 < c(200) � 2c(100))

for all t > 0. Similarly, by taking � and � such that A(�; �) = �� for some negative constant, we

71Recall that the expression for P200 takes the form in the text only if � > �c(200)+5c(100)
100

. Hence implicitly, we are
assuming that the value of � which solves c(100)�c(200)+100�

30000�2
= 0 (, � = c(200)�c(100)

100
) satis�es this restriction, i.e.

c(200)�c(100)
100

> �c(200)+5c(100)
100

, c(200) > 3c(100).
72As before, we need � to satisfy � > �c(200)+5c(100)

100
. This means that c(200)�c(100)+30000�2�+

100
> �c(200)+5c(100)

100
,

c(200) > 3c(100)� 15000�2�+. If c(200) > 3c(100), this restriction will be satis�ed for all � and �+.

52



can identify Pr(Aj < t) Pr("0 < c(200) � 2c(100)) for all t < 0.7374 Combining these two results

together, FA is identi�ed.

Identi�cation of F"0 We now discuss identi�cation of F"0 given that FA and c(�) have been

identi�ed. Recall that P200(�; �) can be expressed as follows,

P200(�; �) = Pr(Aj < A(�; �) ^ "0 < 200��Aj(200�)2 � c(200)).75

Suppose we take a � so that c(100) � c(200) + 100� > 0 (, � > c(200)�c(100)
100 ). Now consider

holding � constant and taking the limit as � ! 0. Then P200(�; �) ! Pr("0 < 200� � c(200)).

Because we can move � in the region � > c(200)�c(100)
100 ,76 the distribution of "0 is identi�ed for all

t > c(200)� 2c(100).

Now consider P100(�; �), which is expressed as follows,

P100(�; �) = Pr(A(�; �) < Aj <
�c(100) + 50�

7500�2
^ "0 < 100��Aj(100�)2 � c(100)).77

Again, take a � so that �c(100) + 50� > 0 and c(100) � c(200) + 100� < 0 (, c(100)
50 < � <

c(200)�c(100)
100 ). As before, we take � ! 0, while holding � constant. Then P100(�; �) ! Pr("0 <

100� � c(100)). Because we can move � in the region c(100)
50 ,< � < c(200)�c(100)

100
78 the distribution

of "0 is identi�ed for all t 2 [c(100); c(200)� 2c(100)].

Likewise, consider P50(�; �),

P50(�; �) = Pr(Aj >
�c(100) + 50�

7500�2
^ "0 < 50��Aj(50�)2).79

73We can apply the analogous argument here. We �rst �x A(�; �) at some negative constant ��, but move
200� � Aj(200�)2 � c(200) by changing both � and �. Then considering � ! 0, we obtain � ! c(200)�c(100)

100
, and

P200(�; �) ! Pr(Aj < �� ^ "0 < c(200) � 2c(100) = Pr(Aj > ��) Pr("0 < c(100) � 2c(200)). Hence, by moving ��
appropriately, we identify Pr(Aj < t) Pr("0 < c(200)� 2c(100)) for all t < 0.
74We need � to satisfy � > �c(200)+5c(100)

100
. This means that c(200)�c(100)+30000�2��

100
> �c(200)+5c(100)

100
, c(200) >

3c(100)�15000�2��. If c(200) > 3c(100), for each ��, there will be some interval (0; ���) such that for any � 2 (0; ���)
this restriction is satis�ed.
75This is true as long as � is �big�enough, i.e. c(50)�c(100)+50�

7500�2
> 100��c(200)+c(100)

30000�2
(, � > �c(200)+5c(100)

100
).

76Note that c(200) > 3c(100) implies c(200)�c(100)
100

> �c(200)+5c(100)
100

.
77This is true as long as c(50)�c(100)+50�

7500�2
> A(�; �) (, � > �c(200)+5c(100)

100
).

78Note that c(200) > 3c(100) implies c(200)�c(100)
100

> c(100)
50

> �c(200)+5c(100)
100

.
79This is true as long as c(50)�c(100)+50�

7500�2
> 100��c(200)+c(100)

30000�2
(, � > �c(200)+5c(100)

100
).
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As before, take a � so that �c(100) + 50� < 0 (, � < c(100)
50 ). Then P50(�; �) ! Pr("0 < 50�).

Because we can move � in the region c(100)
50 > � (> �c(200)+5c(100)

100 ), the distribution of "0 is identi�ed

for at all �c(200)+5c(100)2 < t < c(100).

Lastly, consider P50(�; �), when � <
�c(200)+5c(100)

100 :80

P50(�; �) = Pr(Aj >
150�� c(200)
37500�2

^ "0 < 50��Aj(50�)2).

If we take a � so that 150�� c(200) < 0 (, � < c(200)
150 ). Then P50(�; �)! Pr("0 < 50�). Because

we can move � in the region � < minf�c(200)+5c(100)100 ; c(100)150 g (, � < �c(200)+5c(100)
100 ), the distribution

of "0 is identi�ed for at all t <
�c(200)+5c(100)

2 . Combining these results, F"0(t) is identi�ed for all

t 2 R.

Identi�cation of Pq(�; �) In this subsection, we discuss identi�cation of FN (the distribution

of the number of lenders that visit the listing) and Pq(�; �) for all values of �, � and q 2M under

the assumption that lenders behave as if they are not pivotal. For the purpose of exposition, we

start our discussion whenM = f$50g, i.e., when the lenders do not have any amount choice. Recall

that we assumed that FN has �nite support, i.e., the support is f0; 1; � � � ; �Ng for some �nite �N .

First, the upper bound �N is identi�ed by the maximum requested amount by the borrower that

has positive probability of being funded. If the borrower requests an amount that is larger than

$50� �N , then the loan is never funded. Conversely, for loans whose requested amount is less than

$50 � �N , there is a positive probability of being funded. Hence �N is identi�ed by the maximum

loan amount for which the probability of being funded is nonzero.81

Next we identify fP0(�; �), P50(�; �)g and fN (0),..., fN ( �N), where fN (�) is the pdf of FN . In

order to do so, consider listings which, if funded at an interest rate equal to the reserve interest

rate, yields mean return � and variance �2. Among such listings, consider listings with a requested

amount just equal to $50� �N . Then it follows that

Pr(fund = 1jxamt = $50� �N) = fN ( �N)� P50(�; �)
�N ,

80This is the case when the intersection between U50 and U200 lies to the right of the intersection between U50 and
U100. (

100��c(200)+c(100)
30000�2

> c(50)�c(100)+50�
7500�2

)
81 In practice, Prosper has a cap regarding how much a borrower can request. The cap is at $25; 000. While the

funding probability of listings that request $25; 000 is small, it is nonetheless strictly positive. Hence, assuming rich
support for request amount is somewhat problematic.
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where the left hand side is the observed funding probability, and the right hand side is the probability

that �N potential lenders visit the listing, multiplied by P50(�; �). Recall that P50(�; �) is just the

probability that all lenders who visited the listing receive higher utility from bidding $50 than from

not lending (assuming that the listing is funded at an interest equal to the reserve interest rate).

Given the strategy of the lenders that we described in section 4.2, a listing is funded if and only if

there are enough lenders that are willing to fund it when the mean and the variance of the return

from the listing is evaluated at the reserve interest rate. This implies that a listing with a loan

amount equal to $50� �N is funded if and only if there are �N bidders who visit the listing and all

of them prefer to bid $50 on the listing to not funding the listing (at the reserve interest rate).

Similarly, consider a listing with requested amount equal to $50� ( �N � 1). Then,

Pr(fund = 1jxamt = $50� ( �N � 1))

= fN ( �N)� C
�N
1 � P0(�; �)P50(�; �)

�N�1 + fN ( �N � 1)� P50(�; �)(
�N�1) + fN ( �N)� P50(�; �)

�N .

The right hand side is equal to the sum of three probabilities: the �rst term is the probability that

�N potential lenders visit the listing and �N � 1 of them decide to bid, the second term corresponds

to the probability that �N � 1 potential lenders visit the listing, and all of them decide to bid, and

the last term is the probability that there are �N potential lenders, all of whom decide to bid. We

repeat this process for all amounts f50, 100,� � � , 50 � �Ng. This yields �N equations (for each loan

amount) and �N + 1 unknowns, P50(�; �), fN (1),..., fN ( �N).82 Now consider repeating the above

exercise with a di¤erent � and � (say �0 and �0). Then this yields �N additional equations. Because

we assume that FN is invariant to (�; �), we have a total of 2� �N equations and �N + 2 unknowns

(P50(�; �), P50(�0; �0), fN (0),..., fN ( �N)). Assuming that FN is invariant to (�; �), we can increase

the number of equations at a faster rate than the number of observables. Hence P50(�; �), and

fN (0),..., fN ( �N) are identi�ed for all � and �.

The preceding identi�cation argument focused on the case when M = f$50g, i.e., when there is

no amount choice. We now brie�y discuss identi�cation when M = f$50, $100, $200g. As before,

we start with identi�cation of �N : �N is again identi�ed by the maximum loan amount for which the

probability of being funded is nonzero: $200 � �N is the threshold loan amount, below which the

82Note that P0(�; �) = 1� P50(�; �) and fN (0) = 1�
P �N

n=1 fN (n).
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probability of being funded is positive, and above which the probability is zero.

In the presence of amount choice, the objects that we would like to identify are now fP0(�; �),

P50(�; �), P100(�; �), P200(�; �)g and fN (0),..., fN ( �N). As before, consider listings which, if funded

at an interest rate equal to the reserve interest rate, yields mean return � and variance �2. Moreover,

if we consider listings with amount equal to $200� �N , we see that

Pr(fund = 1jxamt = $200� �N) = fN ( �N)� P200(�; �)
�N .

For listings with amount equal to $200� ( �N � 1) + 100,

Pr(fund = 1jxamt = $200� ( �N � 1) + 100)

= C
�N
1 � fN ( �N)� P200(�; �)

�N�1P100(�; �) + fN ( �N)� P200(�; �)
�N .

Similarly, we can express the probability that the loan is funded for di¤erent loan amounts as a

function of Pq(�; �) and fN . The number of (independent) equations we end up with is �N +2, and

the number of unobservables is �N + 3. Assuming that FN is invariant to (�; �), we can increase

the number of equations at a faster rate than the number of observables. Hence Pq(�; �) and fN

are identi�ed for all � and �.

We acknowledge that assuming FN is invariant to (�; �) is a strong assumption: In fact it is

stronger than we need. We only need FN to be invariant to a small subset of the characteristic

of the listings. Out of the many listing characteristics, it is natural to let FN depend on some of

them, such as the credit grade. This is possible, as long as there is some element xk in the vector

of listing characteristics x, to which FN is invariant.

A.4 Estimation Procedure of Pr(sjx) and f(rjs; x)

We explain how to implement estimation of Pr(sjx) and f(rjs; x) in this section. In order to

estimate f(rjs; x), we �rst divide the observations into 14 subsamples by the credit grade of the

borrower (AA, A, B, C, D, E, and HR) and by home ownership. This is necessary because the

estimation strategy by Gallant and Nychka (1987) requires continuous support for each covariate.

Hence, for discrete conditioning variables we nonparametrically estimate f(rjs; x) separately for
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each value. For estimation of Pr(sjx), we divide the observations into 7 subsamples by the credit

grade of the borrower and estimate a Probit model, i.e., Pr(sjx) = �(P (x; s)), where P is a second

order polynomial of x and s. Let cPr(sjx) and bf(rjs; x) be the estimates of Pr(sjx) and f(rjs; x).
In addition to f(rjs; x) and Pr(sjx), we need @ Pr(sjx)

@s and @f(rjs;x)
@s , when we evaluate the �rst

order condition of the borrower�s problem. We compute @cPr(sjx)
@s and @ bf(rjs)

@s by taking analytical

derivatives of cPr(sjx) and bf(rjs; x), respectively.
A.5 Discussion of Partial Pooling

A.5.1 Additional Condition for Partially Pooling Equilibria at 36%

In order for there to exist an equilibrium with partial pooling among the low types, we need an

extra condition in addition to the ones that we explained in the main text. The extra condition

requires that the pooled types do not bene�t from changing the reserve rate. Formally, let 'm

denote the marginal type, where borrowers with types below 'm are pooled and borrowers above

are not pooled. Moreover, let sm(6= 0:36) be the largest reserve rate that the set of non-pooled

types submit. Then the extra condition we need is

V0(0:36; '
m) = V0(s

m; 'm),

i.e., the marginal type is indi¤erent between being pooled and not pooled.

A.5.2 Identi�cation of the Borrower�s Model when There is Pooling

Our discussion in the main text focused on the case when there is no pooling. As long as we can

identify F"jX using the subset of the borrowers who are not pooled, we can identify F'jX for the

case of pooling as well. To see this, �rst note that we can identify F'jX for borrowers who are

not being pooled just as before. Now consider the terminal decision of the borrower who is being

pooled: 8><>: repay: if � (r � xamt) + "T � �F�1'jX(�
pool)

default: otherwise
,
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where F�1'jX(�
pool) is a random variable with �pool � U [0;mpool] and mpool is the fraction of bor-

rowers who submit s = 0:36.83 Note that F�1'jX(�
pool) is a random variable because we do not know

the exact value of ' for pooled borrowers: We only know that ' is below F�1'jX(m
pool). Given that

the distribution of "T + F
�1
'jX(�

pool) can be identi�ed and we have already identi�ed the distribu-

tion of "T from markets with no pooling, it is immediate that we can identify the distribution of

F�1'jX(�
pool) nonparametrically.
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Table 1: Descriptive Statistics �Listings

Amount Reserve Debt/ Home Bid Fund
Grade Requested Rate Income Owner Count Pr. Obs.

mean sd mean sd mean sd mean sd mean sd
AA 13,144.8 8,342.8 0.132 0.047 0.364 0.976 0.812 0.391 171.0 204.2 0.534 1,420
A 12,396.2 7,881.7 0.165 0.067 0.376 0.673 0.612 0.487 116.1 161.6 0.409 1,850
B 10,622.4 6,096.5 0.211 0.075 0.386 0.655 0.593 0.491 82.5 117.2 0.334 3,068
C 7,622.3 5,158.0 0.246 0.078 0.373 0.623 0.556 0.497 39.3 65.2 0.247 5,203
D 6,368.5 4,691.3 0.287 0.075 0.389 0.711 0.370 0.483 19.8 42.3 0.155 6,581
E 4,783.5 4,868.2 0.310 0.073 0.360 0.680 0.329 0.470 4.7 13.7 0.068 5,757

HR 4,350.7 4,599.4 0.315 0.069 0.308 0.641 0.221 0.415 2.2 7.3 0.030 11,362
All 6,603.9 5,937.8 0.274 0.089 0.354 0.679 0.393 0.488 31.1 84.1 0.158 35,241

This table presents summary statistics of listings posted on Prosper.com by credit grade.
Debt/Income is the debt-to-income ratio of the borrower. Home Owner is a dummy variable that
equals 1 if the potential borrower is a homeowner and 0, otherwise. Bid Count is the number of
submitted bids by the lenders. Fund Pr. stands for the percentage of listings that are funded.
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Table 2: Descriptive Statistics �Loans

Amount Reserve Contract Debt/ Home Bid
Grade Requested Rate Rate Income Owner Count Obs.

mean sd mean sd mean sd mean sd mean sd mean sd
AA 9,710 7,384 0.131 0.046 0.096 0.033 0.21 0.39 0.80 0.40 131.5 99.3 755
A 8,723 6,626 0.165 0.060 0.127 0.045 0.23 0.14 0.55 0.50 114.0 84.4 755
B 7,347 4,858 0.216 0.063 0.164 0.046 0.27 0.34 0.56 0.50 100.9 67.6 1,023
C 4,687 2,998 0.247 0.064 0.181 0.062 0.25 0.21 0.48 0.50 53.4 38.3 1,285
D 3,578 2,380 0.280 0.064 0.210 0.066 0.24 0.17 0.26 0.44 21.6 11.7 1,022
E 1,890 1,187 0.339 0.028 0.291 0.057 0.22 0.22 0.26 0.44 44.7 30.6 392

HR 1,690 1,288 0.339 0.036 0.300 0.057 0.20 0.44 0.17 0.38 17.6 10.4 339
All 5,821 5,285 0.233 0.086 0.179 0.079 0.24 0.28 0.47 0.50 80.0 76.7 5,571

This table reports the summary statistics of loans. Loans are the subset of listings that are
funded. Contract Rate is the interest rate charged to the borrower. Debt/Income refers to the
debt-to-income ratio of the borrower. Home Owner is a dummy variable that equals 1 if the
potential borrower is a homeowner and 0, otherwise. Bid Count is the number of submitted bids
by the lenders.
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Table 3: Descriptive Statistics �Default Timing

Default Default Timing
Grade Prob. mean sd 10% 25% 50% 75% 90% Obs
AA 0.149 18.7 8.9 9 12 17 25 35 113
A 0.211 18.7 9.2 8 11 16 26 33 159
B 0.297 17.3 8.0 8 11 16 23 28 303
C 0.309 17.2 8.3 7 10 16 23 30 397
D 0.321 17.8 8.9 7 10 16 25 31 328
E 0.372 18.2 9.0 7 10 17 26 32 146

HR 0.439 15.3 8.3 7 9 13 20 28 149
All 0.286 17.5 8.6 7 10 16 24 31 1,595

This table presents descriptive statistics of the repayment behavior of the borrowers, by credit
grade. The �rst column reports the percentage of funded loans that end in default. The second
and third columns report the average and standard error of the number of months until default
for the subset of loans that end in default. Columns 4 through 8 report the quantiles of the
number of months until default.
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Table 4: Descriptive Statistics �Internal Rate of Return

Grade mean sd 10% 25% 50% 75% 90% Obs
AA -0.011 0.283 -0.449 0.061 0.082 0.110 0.132 755
A -0.025 0.331 -0.767 0.072 0.094 0.135 0.181 755
B -0.074 0.404 -0.871 -0.229 0.136 0.169 0.211 1,023
C -0.060 0.413 -0.871 -0.211 0.135 0.196 0.256 1,285
D -0.036 0.424 -0.865 -0.192 0.153 0.231 0.316 1,022
E 0.000 0.475 -0.861 -0.315 0.249 0.345 0.394 392

HR -0.112 0.532 -0.886 -0.800 0.202 0.345 0.398 339
All -0.046 0.402 -0.858 -0.100 0.121 0.187 0.281 5,571

This table reports the sample statistics of the internal rate of return (IRR) of the loans originated
by Prosper. We present the average IRR, the standard error, and the quantiles of the
distriubution. See footnote 21 on how we computed the IRR.
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Table 5: Reduced Form Analysis - Funding Probability and Contract Interest Rate.

Funded Contract Rate
Reserve Rate 2:1368��� 0:6834���

(0:0263) (0:0145)
Amount �0:0001��� 0:00001���

(0:0000) (0:0000)
Debt/Income �0:7971��� 0:0731���

(0:0015) (0:0037)
Home owner �0:1513��� 0:0137���

(0:0004) (0:0018)
Grade

AA 3:6468��� �0:3013���
(0:0044) (0:0061)

A 3:0727��� �0:2670���
(0:0033) (0:0055)

B 2:5681��� �0:2347���
(0:0022) (0:0046)

C 1:8743��� �0:1862���
(0:0014) (0:0038)

D 1:2754��� �0:1329���
(0:0011) (0:0034)

E 0:5022��� �0:0499���
(0:0014) (0:0036)

Observation 35; 241 35; 241
R2 0:2827
Likelihood �1; 137

The �rst column reports the estimated coe¢ cients of the Probit model (expression (1)). The unit
of observation is a listing. The dependent variable is an indicator variable that equals one if the
listing is funded and zero, otherwise. The second column reports the estimated coe¢ cients of the
Tobit model (expression (2)). The dependent variable is the contract interest rate charged to the
borrower. In addition to the independent variables shown in the table, we also control for month
dummies, day-of-the-week dummies, and hour-of-the-day dummies. Standard errors are
robust-heteroskedasticity-consistent, and are presented in parentheses below the coe¢ cients.
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Table 6: Reduced Form Analysis - Repayment Behavior and Reserve Interest Rate.

Default Rate of Return Default Time
Reserve rate 1.5365��� -0.5919��� 3.6714���

(0.4095) (0.1313) (0.8019)
Contract rate 2.1531��� 0.0540 4.1446���

(0.4091) (0.1372) (0.7463)
Amount 1.92E-05��� -4.51E-06��� 3.30E-05���

(4.38E-06) (1.24E-06) (7.64E-06)
Debt / income 0.0275 -0.0314 0.0726

(0.0588) (0.0197) (0.1016)
Home owner 0.0633 -0.0471��� 0.1399���

(0.0366) (0.0117) ( 0.0714)
Grade

AA -0.1896 0.0595 -0.1714
(0.1236) (0.0402) (0.2389)

A -0.1543 0.0475 -0.1764
(0.1083) (0.0366) (0.2100)

B -0.0888 0.0224 -0.0999
(0.0894) (0.0320) (0.1700)

C -0.0780 0.0380 -0.0233
(0.0777) (0.0288) (0.1664)

D -0.1162 0.0636�� -0.0843
(0.0773) (0.0272) (0.1406)

E -0.2814��� 0.1155��� -0.4632���

(0.0878) (0.0296) (0.1484)

Observation 85,657 5,571 85,657
R2 0.0224
Likelihood -4,686 -10,333

The �rst column reports estimated coe¢ cients from the panel Probit model (expression (3)). The
unit of observation is a loan - period. The dependent variable is an indicator variable that equals
one if the loan ends in default at period t. The second column presents estimated coe¢ cients of
the OLS model (expression (4)). In this model, the unit of observation is a funded loan. The
third column shows estimated coe¢ cients of the Cox�s proportional hazard model (expression
(5)). The dependent variable is the month from the start of the loan in which the borrower
defaults. In addition to the independent variables shown in the table, we also control for month
dummies, day-of-the-week dummies, and hour-of-the-day dummies. Standard errors are
robust-heteroskedasticity-consistent, and are presented in parentheses below the coe¢ cients.
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Table 7: Parameter Estimates of the Borrower�s and Lender�s Model.

Borrower Lender Estimates by Grade
Parameter Estimates Parameter AA A B C

�" 6:0096 �N 4:5848 3:5513 4:3386 2:9504
(0:2095) (0:0635) (0:1569) (0:2761) (0:0733)

�AA 3:0965 �N 0:7213 1:3940 1:1132 1:4640
(0:0827) (0:0442) (0:0984) (0:3151) (0:0448)

�A 4:3398 �A 2:24� 10�2 1:91� 10�2 3:67� 10�2 3:46� 10�2
(0:1384) (1:64� 10�3) (1:72� 10�3) (8:22� 10�3) (1:79� 10�3)

�B 9:4551 �A 2:22� 10�2 2:00� 10�2 1:75� 10�2 1:58� 10�2
(0:3477) (9:36� 10�4) (6:58� 10�4) (3:29� 10�3) (4:56� 10�4)

�C 8:8111 �"0 �14:8775 �13:2908 �9:60346 �1:4651
(0:3551) (0:8411) (0:7640) (1:8669) (0:0385)

�"0 86:4102 62:7313 32:1786 88:4056
(10:2508) (4:0462) (4:4980) (2:6275)

c100 �1:6206 �1:7003 �0:5006 0:56680
(0:3704) (0:1413) (0:0755) (0:0238)

c200 �21:9644 �27:3998 �10:9928 �14:8229
(3:1801) (2:8967) (2:7251) (0:5049)

Obs 3; 818 1; 420 1; 850 3; 068 5; 203

We report the parameter estimates of the borrower�s model in the �rst column of this table and
the estimation results of the lender�s model in the rest. Time dummies are included in the
estimation of the borrower�s model, but we omit the estimates from the table. Standard errors are
obtained by bootstrap and they are reported in parentheses.
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Table 8: Quantile of the Borrower�s Type Distribution.

Quantile AA A B C
25% 7.493 5.597 2.173 2.425
50% 9.367 6.766 2.789 2.957
75% 10.509 7.417 3.242 3.400

This table reports the quartile of the default cost of the borrower, ', by credit grade.
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Table 9: Parameter Estimates of the Regression of the Borrower�s Type on the Characteristics.

Parameter Estimates
Constant 16:01

(0:86)
Log amount requested �2:00

(0:10)
Debt to Income Ratio �1:25

(0:11)
Home Ownership 0:26

(0:15)
Grade

AA 11:23
(0:24)

A 8:49
(0:22)

B 3:51
(0:18)

Observation 3; 818

The table presents the estimated coe¢ cients of the Tobit model described in the last paragraph of
Section 7. The dependent variable is the estimated borrower type, '̂. Standard errors are
obtained by bootstrap and they are reported in parentheses.
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Table 10: Expected Surplus for Di¤erent Market Designs by Credit Grade.

Expected Median
Borrower Lender Total Borrower Lender Total

Signaling 466.4 1642.6 2109.0 423.3 1645.2 2068.5
AA Pooling 613.2 2531.4 3144.6 567.7 2587.1 3154.9

Symmetric 675.7 2801.6 3477.2 633.0 2885.6 3518.6

Signaling 143.0 1470.4 1613.4 143.1 1488.6 1631.7
A Pooling 142.7 1491.7 1634.4 142.4 1497.5 1639.9

Symmetric 143.3 1481.5 1624.8 143.1 1488.6 1631.7

Signaling 396.7 573.5 970.2 380.4 577.9 958.3
B Pooling 343.1 477.6 820.7 327.7 478.1 805.7

Symmetric 398.4 579.8 978.2 382.2 581.7 963.9

Signaling 417.9 510.0 927.9 434.5 508.5 943.0
C Pooling 374.7 445.3 820.0 392.1 446.1 838.2

Symmetric 425.5 518.7 944.2 446.7 517.3 964.0

The �rst three columns correspond to the expected surplus averaged across all borrower types.
The last three columns correpond to the expected surplus of the median borrower type. The
requested amount, debt-to-income ratio, and home ownership status are set to their median
values. The units are in U.S. dollars.
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Figure 1: Funding Decision �The �gure shows how a loan is funded for the simple case in which
lenders only submit a bid with an amount of $50. The horizontal axis corresponds to amount and
the vertical axis corresponds to the interest rate. The left panel illustrates a situation in which
the requested amount is $10,000, and the listing has received 160 bids ($8,000). The right panel
illustrates the situation in which the requested amount is $10,000, and it has attracted more than
200 bids.
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Figure 2: Distribution of Reserve Interest Rate by Credit Grade �We show the distribution of
reserve interest rate by credit grade. The reserve interest rate is capped at 36% because of the
usury law.
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Figure 3: Distribution of Bid Amount �The �gure shows the distribution of bid amount for each
credit grade. Bids with amount exceeding $250 are not shown. The fraction of these bids is about
3.5%.
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Figure 4: Graphical Representation of the Lender�s Problem: Case of No Amount Choice �The
�gure illustrates how the lender should bid when there is no amount choice. In the left panel,
the horizontal axis is �2 and the vertical axis is �. For each listing and for each realization of the
contract interest rate, we can assign a corresonding point on this ���2 plane. Curve C corresponds
to the mean and variance of a listing for di¤erent realizations of r. The dashed line is the lender�s
indi¤erence curve. The right panel plots the lender�s utility, ULj (Z(r)), against r. The dotted line
at "0j corresponds to the lender�s outside option.
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Figure 5: Graphical Representation of the Lender�s Problem: Case of Amount Choice �The �gure
illustrates how the lender should bid when there is amount choice. The horizontal axis corresponds
to the interest rate, and the vertical axis corresponds to the lender�s utility. Each curve WL

q (r)
illustrates the relationship between r and the lender�s utility when the lender bids q. I1 corresponds
to the region of the active interest rate for which bidding $200 is optimal. I2, I3, and I4 correspond
to the regions of the active interest rate for which bidding $100, $50, and $0 is optimal, respectively.
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Figure 6: The Credit Supply Curve for the Borrower of the Median Type �The thick dotted curve
corresponds to the credit supply curve under no signaling (i.e., pooling). The solid line corresponds
to the credit supply curve under signaling, and the dotted line that lies on top of it corresponds
to the credit supply curve under no asymmetric information. Borrower covariates are set to the
median values.
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Figure 1: (Appendix) Lender utility as a function of A �The �gure shows the regions of A that
correspond to P0(�; �), P50(�; �), P100(�; �), and P200(�; �), for a given value of "0. This graph
is drawn for the case in which the intersection between U200 and U100 is located to the left of the
intersection between U100 and U50. In the �gure, three lines represent U50 = 50�+2500�A� c(50),
U100 = 100�+ 10000�A� c(100), and U200 = 200�+ 40000�A� c(200), respectively.
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